2. Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 2 và 5
Cho A = 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5.
\(999993^{1999}=999993^{1996}.999993^3=\)
\(=\left(999993^4\right)^{499}.999993^3\)
\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1
\(999993^3\) có tận cùng là 7
\(\Rightarrow999993^{1999}\) có tận cùng là 7
Ta có
\(555557^{1997}=555557^{1996}.555557=\)
\(=\left(555557^4\right)^{499}.555557\)
\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1
\(555557\) có tận cùng là 7
\(\Rightarrow555557^{1997}\) có tận cùng là 7
\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)
a, Cho A = 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 9
Ta thấy: 9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5
Ta có: A=9999931999-5555571997
=> A=.....9-......7
=> A=.....2
Vậy A có tận cùng = 2
Mà số có tận cùng bằng 2 ko bao giờ chia hết cho 5
xem lại đề
bài 1 : cmr
a) 995-984+973-962 chia hết cho 2 và 5
b) 5n-1 chia hết cho 4 với mọi số tự nhiên n
c) 88...8-9+n chia hết cho 9 (có n chữ số 8)
d) 9999931999- 5555571997chia hết cho 5
a, 995 - 984 + 973 - 962
= (…9 ) - (…6) + (…3) - (…6)
= 0
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5 tick minh nha
1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
cho A = 999991999 - 5555571997 . chứng minh A chia hết cho 5
a, cho A = 9999931999 - 5555571997
Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng :
\(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+....+\dfrac{1}{79}+\dfrac{1}{80}\) >\(\dfrac{7}{12}\)
Ta có:
A=9999931999−5555571997
A=9999931998.999993−5555571996.555557
A=(9999932)999.999993 − (5555572)998.555557
A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)
A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)
A= \(\overline{\left(...0\right)}\)
Vì A có tận cùng là 0 nên \(A⋮5\)
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a) 5x = 125; b) 32x = 81 ; c) 52x-3 – 2.52 = 52 .3 8) Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương. 9) Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10. 10) Tính A = 4 + 2 2 + 2 3 + 2 4 +. . . + 2 20 11) Tìm x biết: ( x + 1) + ( x + 2) + . . . + ( x + 100) = 5750. 12) Chứng minh nếu: (ab + cd + eg )⋮ 11 thì abc deg ⋮ 11. 13) Chứng minh 10 28 + 8 ⋮ 72. 14) Hai lớp 6A;6B cùng thu nhặt một số giấy vụn bằng nhau. Lớp 6A có 1 bạn thu được 26 Kg còn lại mỗi bạn thu được 11 Kg ; Lớp 6B có 1 bạn thu được 25 Kg còn lại mỗi bạn thu được 10 Kg . Tính số học sinh mỗi lớp biết rằng số giấy mỗi lớp thu được trong khoảng 200Kg đến 300 Kg. 15) So sánh: 222333 và 333222 16) Tìm các chữ số x và y để số 1x8y2 chia hết cho 36 17) Tìm số tự nhiên a biết 1960 và 2002 chia cho a có cùng số dư là 28 18) Cho : S = 30 + 32 + 34 + 36 + ... + 32002 a) Tính S b) Chứng minh S ⋮ 7 19) Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 dư 5 và chia cho 31 dư 28 20) Tìm chữ số tận cùng của các số sau: a) 571999 b) 931999 21) Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5. 22) Cho phân số b a (0 < a < b) cùng thêm m đơn vị (m > 0) vào tử và mẫu thì phân số mới lớn hơn hay bé hơn b a 23) Cho số 155*710* 4*16 có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho 396. 24) Chứng tỏ rằng: 2x + 3y chia hết cho 17 ⇔ 9x + 5y chia hết cho 17 25) Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất 26) Người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2006 liền nhau thành một số tự nhiên L . Hỏi số tự nhiên L có bao nhiêu chữ số 27) Có bao nhiêu chữ số gồm 3 chữ số trong đó có chữ số 4 28) Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
Ai làm nhanh mik tick
Cho m= abba.Tìm m
a) m không chia hết cho 2; m chia 5 dư 3 và ab+ba=99
b) m chia hết cho 2; m chia 5 dư 3 và b-a chia hết cho 5
bài 2
a) Chứng minh rằng với mọi số tự nhiên n thuộc N thì (n+4).(n+9) chia hết cho 2
b) Chứng minh rằng abba chia hết cho 11