Cho x,y là các số tự nhiên biết: 2015.x^2+x=2016.y^2+y
CMR:x-y là số chính phương
1 Tìm các số nguyên x,y tm
x^2013+x^2014+2009^2015=y^2015+y^2016+2010^2016
2 tìm số tự nhiên x,y biết 7*(x-2015)^2=23-y^2
tìm tất cả các số nguyên x,y thỏa mãn:2017^x-2016^y+1/2015 là một số chính phương
Cho x, y, z là các số tự nhiên. Cm C=4x(x+y)(x+y+z)(x+z)+y2z2 là một số chính phương.
\(C=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\left(1\right)\)
Đặt \(a=x^2+xy+xz\)và \(b=yz\)ta có:
\(\left(1\right)\Rightarrow C=4a\left(a+b\right)+b^2=b^2+4ab+4a^2=\left(b+2a\right)^2\)
Vậy C là một số chính phương.
Cho x; y; z là các số tự nhiên . C/m rằng: M= 4x(x+y)(x+y+z)(x+z) +y^2z^2 là số chính phương
tìm x,y là số tự nhiên biết (x+y+1)^2 -2x + 2y là số chính phương
Cho các số tự nhiên x,y thỏa mãn x2 + 2y là số chính phương. Chứng minh rằng x2 + y có thể viết thành tổng của 2 số chính phương
cho x= 1+2+2^2+.................................+2^2015
y=2^2016
chứng minh rằng x,y là hai số tự nhiên liên tiếp nhau
Ta có
2x=2+2^2+2^3+...+2^2016
=>2x-x=(2+2^2+2^3+...+2^2016)-(1+2+2^2+...+2^2015)
=>x=2^2016-1
Mà y =2016
Nên x,y là 2 so tu nhien lien tiep
\(x=1+2+2^2+....+2^{2015}\)
\(2x=2+2^3+2^4+...+2^{2016}\)
\(2x-x=\left(2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+....+2^{2015}\right)\)
\(x=2^{2016}-1\)
Vì \(x=2^{2016}-1;y=2^{2016}\)
Vậy x và y là 2 số tự nhiên tiếp nhau
Cho x,y là các số tự nhiên thỏa mãn 3x^2 + x= 4y^2 +y. Cmr 2xy +4(x+y)^3 +x^2+y^2 là số chính phương.
Giúp mik bài này nhé!!! cảm ơn nhiều:D
Cho x2 +2y là số chính phương với x,y là số tự nhiên .Chứng minh x2 +y bằng tổng 2 số chính phương