Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Time Lord
Xem chi tiết
Time Lord
Xem chi tiết
Time Lord
Xem chi tiết
Time Lord
Xem chi tiết
Nao Tomori
4 tháng 7 2015 lúc 8:22

trừi ơi , bạn có thôi ngay cái tính đó ko ,

bạn nói kiểu này , có khi bạn cần bài toán nào , bạn đăng lên ko ai làm đâu

witch roses
Xem chi tiết
khucdannhi
Xem chi tiết
Arima Kousei
30 tháng 4 2018 lúc 11:02

Ta có :  

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow N< 1-\frac{1}{2010}\)

\(\Rightarrow N< 1\left(đpcm\right)\)

Chúc bạn học tốt !!!! 

khucdannhi
30 tháng 4 2018 lúc 11:00

mọi người ơi tl nhanh nhanh nha mk đag rất cần

Tăng Thị Cẩm Tú
Xem chi tiết
Hoàng Phúc
14 tháng 2 2016 lúc 10:06

ta có: \(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2010^2}=\frac{1}{2010.2010}<\frac{1}{2009.2010}\)

\(\Rightarrow N<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2009}-\frac{1}{2010}=\frac{1}{1}-\frac{1}{2010}=\frac{2009}{2010}<1\)

=>N<1(đpcm)

Lý Hoàng Kim Thủy
Xem chi tiết
Nguyễn Anh Duy
28 tháng 10 2016 lúc 20:27

Thôi, cho phép mình góp ý bài mình đã làm bằng cách đơn giản hơn nha ^^.

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có:

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)

\(=A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow A< 1-\frac{1}{2010}\)

\(\Rightarrow A< 1\)

\(\Rightarrow A< \frac{3}{4}\)

Nguyễn Đình Dũng
28 tháng 10 2016 lúc 17:52

Có: \(\frac{1}{2^2}< \frac{1}{1.2}\); \(\frac{1}{3^2}< \frac{1}{2.3}\);...;\(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=1-\frac{1}{2010}=\frac{2009}{2010}\)\(\frac{2009}{2010}>\frac{3}{4}\) -> Sai đề

 

Nguyễn Anh Duy
28 tháng 10 2016 lúc 18:53

Với mọi k ta luôn có \(k^2\ge k^2-1=\left(k-1\right)\left(k+1\right)\)

\(\Rightarrow\frac{1}{k^2}\le\frac{1}{\left(k-1\right)\left(k+1\right)}=\frac{1}{2}.\left(\frac{1}{k-1}-\frac{1}{k+1}\right)\)

Áp dụng vào ta suy ra

\(2A\le\frac{1}{2}+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{2009}-\frac{1}{2011}\right)=\frac{1}{2}+\frac{1}{2}+\frac{1}{3}-\frac{1}{2010}-\frac{1}{2011}< \frac{3}{2}\)

sakura
Xem chi tiết