Chứng tỏ P/S sau tối giản với mọi n thuộc Z
2n+1/ 2n+3
Chứng tỏ rằng phân sau là phân số tối giản với mọi n thuộc N :n^3+2n/n^4+3n^2+1
Chứng tỏ với mọi n thuộc N* thì các phân số sau sẽ tối giản:
a)2n+3/6n+8
b)4n+1/14n+3
chứng tỏ rằng : Phân số sau tối giản với mọi n thuộc N \(\frac{n+1}{2n+3}\)
Gọi d là ƯCLN của n + 1 và 2n + 3
Khi đó n + 1 chai hết cho d ; 2n + 3 chia hết cho d
<=> 2n + 2 chia hết cho d ; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chai hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/s n + 1/2n + 3 tối giản vs mọi n thuộc N
chứng tỏ rằng P/S 4n+12/ 2n+5 là phân số tối giản với mọi n thuộc Z và n khác -3
giúp mình với helps me
Đặt \(\left(4n+12,2n+5\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left[2\left(2n+5\right)\right]⋮d\end{cases}}\)
\(\Leftrightarrow\left[\left(4n+12\right)-2\left(2n+5\right)\right]⋮d\)
\(\Leftrightarrow\left[4n+12-4n-10\right]⋮d\)
\(\Leftrightarrow2⋮d\Leftrightarrow\orbr{\begin{cases}d=2\\d=1\end{cases}}\)
Dễ thấy \(\left(2n+5\right)\) không chia hết cho 2 \(\Rightarrow d=1\)
Vậy \(\left(4n+12,2n+5\right)=1\) hay \(\frac{4n+12}{2n+5}\) tối giản với mọi n.
Chứng tỏ các phân số sau tối giản với mọi n thuộc N
a,n+3/n+4
b,2n+7/n+3
c,3n+2/2n+1
d,5n+3/3n+2
Chứng tỏ các phân số sau tối giản với mọi n thuộc N
a,n+3/n+4
Để phân số \(\dfrac{n+3}{n+4}\) tối giản thì [n+3;(n+4)] là hai số nguyên tố cùng nhau thì:
[n+3;(n+4)]=1
Gọi d là ước chung lớn nhất[n+3;(n+4)]
\(\Rightarrow\) [n+3;(n+4)]=d
\(\Rightarrow\) n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d
\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d
\(\Rightarrow\) [n+4;(n+3)]\(⋮\)d\(\Rightarrow\)[n+4-n-3]\(⋮\)d=>-1\(⋮\)d=>d=1
Nên n+4;n+3 là hai số nguyên tố cùng nhau
Vậy \(\dfrac{n+3}{n+4}\) là phân số tối giản
Chứng minh rằng p/s sau tối giản với mọi n thuộc N:
a) n+1 / 2n+3
b) 2n+3 / 4n+8
ai tick mk mk tick lại
a) Gọi d= ƯCLN (n+1;2n+3)
Ta có: n+1 chia hết cho d hay 2n+2 chia hết cho d
2n+3 chia hết cho d
suy ra: (2n+3)-(2n+2) chai hết cho d
hay: 1 chia hết cho d
suy ra: d=1
vậy n+1 / 2n+3 là p/s tối giản với mọi n thuộc N
b) Gọi d= ƯCLN ( 2n+3; 4n+8)
Ta có: 2n+3 chia hết cho d hay 4n+6 chia hết cho d
4n+8 chia hét cho d
suy ra : (4n+8)-(4n+6) chia hết cho d
hay: 2 chia hết cho d
suy ra: d=1;2
Nếu d=2 thì 2n+3 chia hết cho 2
hay: 3 chia hết cho 2
Vậy d=1
suy ra : 2n+3 / 4n+8 là p/s tối giản với mọi n thuộc N
ai t ick mk mk t ick lại
Chứng tỏ phân số 2n+1/3n+2 là phân số tối giản với mọi n thuộc Z
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)(2n+1).3\(⋮\)d
(3n+2).2\(⋮\)d
\(\Rightarrow\)6n+3\(⋮\)d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.
\(\Rightarrow\)Đpcm.
Chứng tỏ với mọi n thuộc N* thì các phân số sau sẽ tối giản:
a)
2n+3
6n+8
b)
4n+1
14n+3
chứng tỏ rằng các phân số sau là phân số tối giản với mọi n thuộc N
a> A=2n+3/4n+5
b> B=2n+1/5n+2
c> C=14n+3/21n+4