Cho x> y > 0 và 2x^2+5y^2 =7xy tính x/y
cho x>0 y>0 \(2x^2+5y^2=7xy\)\(tim\frac{x}{y}\)
2x2+5y2=7xy <=>(x-y)(2x-5y)=0
<=> \(\orbr{\begin{cases}x=y\\2x=5y\end{cases}}\)
thay vào là được
Cho x,y thỏa mẵn:\(x^2+5y^2-2xy+2y+2x+2=0\)
Tính giá trị biểu thức: \(H=\frac{x^2-7xy+52}{x-y}\)
hikkkkkkkk làm sắp xong bấm lộn nút mất tiêu
x2+5y2-2xy+2y+2x+2=0
<=>(x2-2xy+y2)+(2x-2y)+1+(4y2+4y+1)=0
<=>(x-y)2+2.(x-y)+1+(2y+1)2=0
<=>(x-y+1)2+(2y+1)2=0
<=>x-y=-1 và y=-1/2
<=>x=-1-1/2=-3/2 và y=-1/2
Vậy: \(H=\frac{x^2-7xy+52}{x-y}=\frac{x^2-xy-6xy+52}{-1}=-\left[x^2-6xy+52\right]\)
còn lại bạn chỉ cần thay vào tính thui nha
B = 2x-5y+7xy với giá trị tuyệt đối x + giá trị tuyệt đối y-2 =0
Bài 1:Tính:
a) (2x-y)+(2x-y)+(2x-y)+3y
b) (x+2y)+(x-2y)+(8x-3y)
c) (x+2y)-2(x-2y)-(2x-3y)
Bài 2: Cho 2 đa thức P= 9x²-6xy+3y² và Q= -3x²+7xy-2y²
Tìm đa thức M biết M+2(x²-4y²)+Q=6x²-4xy+5y²+P
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
Cho x và y thỏa mãn: 4x^2+25y^2=30xy với 2x<5y<0 Tính GTBT A=2x+5y/2x-5y
Tìm x, y thỏa mãn các đẳng thức: x^3 + y^3 - 8xy√2(x^2 + y^2) + 7x^2y + 7xy^2 = 0 và √y - √(2x - 3) + 2x = 6
Cho x>y>0 và x^2 + 3y^2 =4xy
Tính A= (2x+5y) / (x-2y)
Cho \(\frac{x}{5y}=\frac{y}{2x+y}=\frac{10-5y}{x}\) với x,y khác 0, y khác 2x. Tính \(\left(\frac{x}{y}\right)^2+\left(x-5y\right)^{2015}\)
Chứng minh rằng
a) ( 3x + 2y) (5x - y) - y2 = 15x2 + 7xy- 3y2
b) 2x2 + 5xy + 3y2 = 4x2 - ( x -3y) (2x+y)
c) (x+y) (x-y) - 9y2 = ( x-2y) (x + 5y) - 3xy