Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đồng Anh Tú
Xem chi tiết
bui thi bich phuong
Xem chi tiết
Vu Thi Hoa
Xem chi tiết
Lưu Thị Thùy Vân
Xem chi tiết
Lưu Thị Thùy Vân
29 tháng 10 2019 lúc 18:25

giup mik nha moi nguoiiiiiiiiiii

Khách vãng lai đã xóa
Ngoc chinh
Xem chi tiết
Nhi Le
Xem chi tiết
Trương Hồng Hạnh
6 tháng 12 2016 lúc 8:35

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

doan tang
Xem chi tiết
Phạm Lê Tuấn Minh
19 tháng 4 2018 lúc 16:23

Nối B với N. Xét 2 tam giác ABC và ABN, có chung đường cao hạ từ đỉnh B, lại có cạnh đáy AC = 2 lần cạnh đáy AN nên diện tích tam giác ABN = 1/2 diện tích tam giác ABC = 84:2 = 42 cm2

Xét 2 tam giác AMN và ABN, có chung đường cao hạ từ đỉnh N, lại có cạnh đáy AB = 2 lần AM nên diện tích tam giác AMN = 1/2 diện tích tam giác ABN = 42:2 = 21 cm2

Nguyễn Bách Gia Khương
Xem chi tiết
Hà Khánh Dung
Xem chi tiết

a) Xét tam giác BMC và tam giác DMA có:

AM=AC( M là trung điểm của AC)

AMD^= BMC^( 2 góc đối đỉnh)

BM=MD( gt)

Suy ra: tam giác BMC= tam giác DMA( c.g.c)( đpcm)

b) Xét tam giác DMC và tam giác BMA có:

MB= MD( gt)

DMC^= AMB^( đối đỉnh)

MA=MC( M là trung điểm của AC)

Suy ra: Tam giác DMC= tam giác BMA( c.g.c)

=> AB=DC( 2 cạnh tương ứng)(1)

Mà AB= AC( Tam giác ABC cân tại A)(2)

Từ (1) và (2)

=> DC=AC

=> tam giác ADC cân tại C( đpcm)

 c) có tam giác BMC = tam giác DMA(cmt)

=> BM=DM ( 2 cạnh t/ ứ)

=> M là trung điểm của BD

xét tam giác BDE có

 EM là trung tuyến ứng vs BD ( M là trung điểm của BD)

CI là trung tuyến ứng vs BE ( I là trung điểm của BE)

mà EM giao vs CI tại C

=> C là trọng tâm

=> DC là trung tuyến ứng vs BE

mà CI cũng là đường trung tuyến ứng vs BE(cmt)

=> DC trùng với CI

=> D,C,I thẳng hàng

vậy DC đi qua trung điểm I của BÉ