Tính \(B=\frac{1+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
tính tổng sau :\(c=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\)\(\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
tính b=\(1^2-2^2+3^2-...+2008^2-2009^2\)
a=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
Câu a:
Có dạng tổng quát:\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{x+1}}=\frac{1}{\sqrt{\left(k+1\right)k}\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{\left(k+1\right)k}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k-1}}\)
Áp dụng kết quả trên suy ra câu a
so sánh 2 phân số : \(A=\frac{2008^{2009}+2}{2008^{2009}-1};B=\frac{2008^{2009}}{2008^{2009}-3}\)
Tính B =\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(C=\frac{2010+\frac{2009}{2}+\frac{2008}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...\frac{1}{2008}+\frac{1}{2009}}.\)
có nhầm đề không vậy phải là 2010-
Bài 1:So Sánh:200920và 2009200910
Bài 2:Tính tỉ số \(\frac{A}{B}\), biết:
\(A=\frac{1}{2}\)+\(\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
Bài 1:
Ta có: 200920=(20092)10=403608110 ; 2009200910=2009200910
Vì 403608110< 2009200910 => 200920< 2009200910
Bài 1:
Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)
\(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)
Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)
Tính : \(B=\frac{1+2+2^2+2^3+......+2^{2008}}{1-2^{2009}}\)
Đặt \(A=1+2+2^2+2^3+....+2^{2008}\)
\(2A=2+2^2+2^3+2^4+....+2^{2019}\)
\(A=2^{2019}-1\)
\(\Rightarrow B=\frac{2^{2019}-1}{1-2^{2019}}=\frac{-\left(1-2^{2019}\right)}{1-2^{2019}}=-1\)
tính số hữu tỷ :
\(\frac{A}{B}biếtA=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}B=\frac{2008}{1}+\frac{2007}{1}+..+\frac{2}{2007}+\frac{1}{2008}\)
tính số hữu tỉ \(\frac{A}{B}biết:A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}B=\frac{2008}{1}+\frac{2007}{1}+\frac{2006}{1}+...+\frac{2}{2007}+\frac{1}{2008}.\)
Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!
tính tỉ số A/B , biết
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......................+\frac{1}{2008}+\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+.........................+\frac{2}{2007}+\frac{1}{2008}\)