Cho a,b,c,d thuộc N* và ab=cd
Cm: a+b+c+d không là số nguyên tố.
GIÚP MÌNH VỚI!
Cho A=(2a+b+c)/(a+b+c)+(2b+c+d)/(b+c+d)+(2c+d+a)/(c+d+a)+(2d+a+b)/d+a+b với a,b,c,d thuộc N.Chứng mình A không là số nguyên
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N + 1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N - 1 ) ( N + 1 ) ( N+ 3 ) ( N+ 5 ) CHIA HẾT CHO 384
C, VỚI A,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 , P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau
cho số nguyên tố a,b,c,d thỏa mãn
ab=cd,
cmr A=a^n+b^n+c^n+d^n là 1 hợp số với n thuộc N
không biết câu này đinh tuấn việt có làm đc ko nhỉ?
cho số nguyên tố a,b,c,d thỏa mãn
ab=cd,
cmr A=a^n+b^n+c^n+d^n là 1 hợp số với n thuộc N
đúng thật là hạng tiểu nhân
lên OLM là để làm toán giúp đỡ mọi người chứ ko phải là vì l i k e hiểu chứ?
còn làm toán chỉ vì l i k e thì cũng chẳng ra gì
chung ta làm toán là vì trước hết có lòng đam mê với môn học này đã
a/Chứng tỏ với mọi số nguyên n, thì: (n-1)(n+2)+12 không chia hết cho 9
b/Cho các số nguyên a;b;c;d thõa mãn điều kiện:
a+b=c+d và ab+1=cd.Chứng tỏ c=d
a) Vì (n + 2) - (n - 1) = 3 chia hết cho 3 nên n + 2 và n - 1 cùng chia hết cho 3 hoặc cùng không chia hết cho 3.
*) Nếu n + 2 và n - 1 cùng chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) chia hết cho 9.
Mà 12 không chia hết cho 9
\(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9.
*) Nếu n + 2 và n - 1 cùng không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9
Vậy (n - 1)(n + 2) + 12 không chia hết cho 9
b) ab + 1 = cd.(1)
a + b = c + d \(\Rightarrow\)a = c + d - b.
Thay a vào (1) ta có :
(c + d - b).b + 1 = cd
\(\Rightarrow\)cb + db - b2 + 1 = cd
\(\Rightarrow\) 1 = cd - cb - db + b2
\(\Rightarrow\) 1 = (cd - cb) - (db - b2)
\(\Rightarrow\) 1 = c(d - b) - b(d - b)
\(\Rightarrow\) 1 = (c - b)(d - b)
\(\Rightarrow\) c - b = d - b
\(\Rightarrow\)c = d (đpcm)
Cho a,b,c,d thuộc tập hợp N*
Chứng tỏ rằng"
M= [a/(a+b+c)] + [b/(a+b+d)] + [c/(b+c+d)] + [d/(a+c+d)] có giá trị không là số nguyên
cho a,b,c,d thuộc N*
CTR M=a:(a+b+c)+b:(a+b+d)+c:(b+c+d)+d:(a+c+d) có giá trị không là số nguyên
Ta có a, b, c, d thuộc N*
\(\Leftrightarrow\)\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d}
\)
\(\frac{d}{a+c+d}>\frac{d}{a+b+c+d}\)
Cộng vế theo vế, ta có: M>\(\frac{a+b+c+d}{a+b+c+d}\)=1
Vì a, b, c, d thuộcc N* \(\Rightarrow\) \(\frac{a}{a+b+c}< 1
\)\(\Rightarrow\) \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự, ta có: \(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d},\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d},\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}\)
Tiếp nha bạn:
Công vế theo vế ta có:
M<\(\frac{a+d+b+c+c+a+d+b}{a+b+c+d}
\Rightarrow M< \frac{2a+2b+2c+2d}{a+b+c+d}\)\(\Rightarrow M< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
\(\Rightarrow\) M<2 (2)
Từ (1) và (2) \(\Rightarrow\) 1<M<2
\(\Rightarrow\) M không có giá trị là số nguyên
Cho số a 18, số nguyên tố cùng nhau với a là A. 15 B. 21 C. 35 D. 49 5 Cho n a.b với a,b là các số nguyên tố. Số ước của n là A.2 B. 3 C. 4 D. Không xác định được
giúp mình với
huhu
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N+ 1 LÀ 2 SỐ GUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N-1 ) ( N + 1 ) ( N + 3 ) ( N + 5 ) CHIA HẾT CHO 384
C, VỚI A ,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 ,P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Câu a)
Giả sử k là ước của 2n+1 và n
Ta có
\(2n+1⋮k\)
\(n⋮k\)
Suy ra
\(2n+1⋮k\)
\(2n⋮k\)
Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)
Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau
Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Câu c)
Đang thinking .........................................
LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!
Giả sử k là ước của 2n+1 và n
Ta có
2n+1⋮k
n⋮k
Suy ra
2n+1⋮k
2n⋮k
Suy ra 2n+1là số lẻ (với mọi giá trị n thuộc N)
Suy ra 2nlà số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra 2n+1và 2nlà 2 số nguyên tố cùng nhau
Vậy 2n+1và nlà 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)