Cho tam giác ABC cân tại A,vẽ đường cao BH.Từ điểm M trên cạnh BC vẽ MD vuông góc với AAB,ME vuông góc với AC và MF vuông góc với BH
a)CM HF=ME
b)CM TAM GIÁC DBM=TAM GIÁC FMB
c)CM MD+ME=BH
d)Cho FM=6cm,BM=10cm.TÍNH BF
cho tam giác ABC cân tai A, đường cao BH. trên đáy BC lấy điểm M, vẽ MD vuông góc với AB, ME vuông góc với AC, MF vuông góc với BH
a) chứng minh ME=FH
b) chứng minh tam giác DBM và tam giác FMB = nhau
c) chứng minh khi M chạy trên BC thì tổng MD + ME có giá trị không đổi
d) trên tia đối của CA, lấy điểm K sao cho KC=EH. chứng minh rằng: trung điểm của KD nằm trên cạnh BC
a,
Xét tứ giác MEFH, có :
\(\widehat{MEF}=\widehat{EHF}=\widehat{HFM}=90^o\)
=> tứ giác MEFH là hình chữ nhật
=> ME = FH
a) ME⊥AC, FH⊥AC \(\Rightarrow\)ME//FH.
MF⊥BH, EH⊥BH \(\Rightarrow\)MF//EH.
△MEF và △HFE có: \(\widehat{MEF}=\widehat{HFE};\widehat{MFE}=\widehat{HEF};EF\) là cạnh chung.
\(\Rightarrow\)△MEF=△HFE (g-c-g).
\(\Rightarrow ME=FH\)
b) BH//ME \(\Rightarrow\widehat{FMB}=\widehat{ACB}=\widehat{DBM}\)
△DBM và △FMB có: \(\widehat{BDM}=\widehat{MFB};\widehat{DBM}=\widehat{FMB};BM\) là cạnh chung.
\(\Rightarrow\)△DBM=△FMB (ch-gn)
c) \(S_{ABM}+S_{ACN}=S_{ABC}\)
\(\Rightarrow\dfrac{1}{2}\left(MD.AB+ME.AC\right)=S_{ABC}\)
\(\Rightarrow\dfrac{1}{2}.AB\left(MD+ME\right)=S_{ABC}\)
-Do \(S_{ABC},AB\) ko đổi nên \(MD+ME\) cũng ko đổi.
d) BC cắt DK tại N.
Kẻ KG//AB (G thuộc BC).
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CGK}\\\widehat{ACB}=\widehat{KCG}\end{matrix}\right.\Rightarrow\widehat{CGK}=\widehat{KCG}\)
\(\Rightarrow\)△KCG cân tại K nên \(CK=GK=EH\)
Có: \(BD=MF\) (△DBM=△FMB) ; \(MF=HE\)(△MEF=△HFE)
\(\Rightarrow BD=EH=GK\).
△BDN và △GKN có: \(\widehat{BDN}=\widehat{GKN};\widehat{DBN}=\widehat{KGN};BD=GK\)
\(\Rightarrow\)△BDN=△GKN (g-c-g)
\(\Rightarrow DN=KN\) nên N là trung điểm DK.
\(\Rightarrowđpcm\)
Cho tam giác ABC cân tại A ( góc A < 90 độ ) , kẻ BH vuông góc với AC tại H . Tren đáy BC lấy M , vẽ MD vuông góc với AB tại D ; ME vuông góc với AC tại E : MF vuông góc với BH tại F .
a, CM tam giác DBM = tam giác FMB.
b, CM DF song song với BC
Cho tam giác ABC có AB=AC. Vẽ BH vuông góc AC ( H thuộc AC). Trên BC lấy M, vẽ MD vuông góc AB; ME vuông góc AC; MF vuông góc BH.
a)CM ME = FH
b)CM tam giác DBM= tam giác FMB
c)CM MD+ME=BH
giúp mik với, mik làm đc câu a và b rồi, gúp mik giải câu c và d nha
Cho tam giác ABC cân tại A , đường cao BH. Trên cạch đáy Bc lấy điểm M . Vẽ MD vuông góc vs AB, ME vuông góc vs AC, MF vuông góc vs BH
a, CM: ME=FH
b, CM: tam giác DBM=tam giác FMB
c, khi M chạy trên đáy BC thì tổng MD+ME ko đổi
d, Trên tia đối CA lấy điểm K sao cho KC=EH.C/m: trung điểm của KD nằm trên cạnh BC
Cho tam giác ABC cân tại A( AB=AC và Â= 9O độ). Đường cao BH. Trên đáy BC lấy điểm M( M khác B và C), vẽ MD vuông góc với AB. ME vuông góc với AC. MF vuông góc với BH. Chứng minh MF=FH
b) C/minh tam giác DBM = tam giác FMB
Cho tam giác ABC cân tại A( AB=AC và Â= 9O độ). Đường cao BH. Trên đáy BC lấy điểm M( M khác B và C), vẽ MD vuông góc với AB. ME vuông góc với AC. MF vuông góc với BH. Chứng minh MF=FH
b) C/minh tam giác DBM = tam giác FMB
Cho tam giác ABC cân tại A, đường cao AH. Trên đáy BC lấy điểm M, vẽ MD vuông góc AB, ME vuông góc AC, MF vuông góc BH.
a) CM: ME=FH
b) CM: Tam giác DBM=Tam giác FMB
c) CM: Khi M chạy trên đáy BC thì tổng MD+ME có giá trị không đổi.
d) Trên tia đối CA lấy K sao cho KC=EH. CM: Trung điểm KD nằm trên BC.
Cho tam giác ABC cân tại A. Vẽ đường cao BH. Trên đáy BC lấy điểm M.Vẽ MD vuông góc với AB, ME vuông góc với AC và MF vuông góc với BH
a)Chứng minh ME = FH
b)Chứng minh tam giác DBM = tam giác FMB
c)Chứng minh khi điểm M chạy trên đáy BC thì MD + ME có giá trị không đổi
a, Ta thấy :FH\(\perp\)HE
ME\(\perp\)HE
=>FH//ME
=>FHM^=HME^
Xét \(\Delta\)vuông FHM và \(\Delta\)vuông EMH ,có
HM cạnh chung
FHM^=HME^ (cmt)
=>\(\Delta\)FHM =\(\Delta\)EMH (ch-gn)
=>ME=FH (hai cạnh tương ứng)