tìm các sô tự nhiên n để (n+3) chia hết cho (n -2)
tìm các số tự nhiên n để (n+3) chia hết cho (n-2)
n+3 ⋮ n-2
⇒ n+3-(n-2) ⋮ n-2
⇒n+3-n+2 ⋮ n-2
⇒ n-n+3+2 ⋮ n-2
⇒5 ⋮ n-2
⇒ n-2 ϵ U(5)=(1;5)
+ n-2=1
n=1+2
n=3
+ n-2=5
n=5+2
n=7
vậy n ϵ (3;7)
nếu đúng thì tích đúng cho mình nha
câu 1: Tìm số tự nhiên n để n2 + 3 chia hết cho n+ 2
câu 2: Tìm số tự nhiên n để (3n+14) chia hết cho n+1
1)Tìm số tự nhiên n để 3n+4 chia hết cho n-1
2)Tìm số tự nhiên n để 6n-3 chia hết cho 3n+1
Các bạn nhanh giúp mình với
1 trong 2 bài cũng được
trả lời...................................
đúng nhé..............................
hk tốt.........................................
1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
1)
3n+4 chia hết cho n - 1
ĐK : \(n\ge1\)
Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 )
thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
a) tìm sô tự nhiên x sao cho ( 2x + 3) : ( x - 2)
b) chứng minh rằng với mọi số tự nhiên n thì n2 + 15 không chia hết cho 10
a: \(2x+3⋮x-2\)
=>\(2x-4+7⋮x-2\)
=>\(x-2\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{3;1;9;-5\right\}\)
mà x là số tự nhiên
nên \(x\in\left\{1;3;9\right\}\)
b:Cái mệnh đề này sai với n=5 nha bạn
Tìm tất cả các số tự nhiên n để n+6 chia hết cho 3 n - 2
n+6 chia hết cho 3n-2
=>3n+18 chia hết cho 3n-2
=>3n-2+20 chia hết cho 3n-2
=>20 chia hết cho 3n-2
=>3n-2=-2;-1;1;2;4;5;10;20
=>3n=0;3;6;12
=>n=0;1;2;4
vậy n=0;1;2;4
1,Tìm tất cả các số tự nhiên n để:
a) (15 + 7n) chia hết cho n
b) (n + 28) chia hết cho (n + 4)
2, Có thể tìm được hai số tự nhiên a và b để:
66a + 55b = 111 011?
3, Có số tự nhiên nào mà chia cho 18 dư 12, còn chia cho 6 thì dư 2 không?
1) a) Ta có :
15 + 7n chia hết cho n
mà n chia hết cho n
nên 7n chia hết cho n
=> (15 + 7n ) - 7n chia hết cho n
=> 15 chia hết cho n
=> n thuộc Ư(15) nên n = 1 ; -1 ; 3 ; -3 ; 5 ; -5 ;15 ; -15
b) Ta có :
n + 28 chia hết cho n +4
mà n+4 chia hết cho n+4
nên n+28 - (n+4) chia hết cho n+4
=> 32 chia hết cho n+4
=>n+4 thuộc Ư(32) nên n+4=-1;1;-2;2;-4;4;8;-8;16;-16;32;-32
=> n lần lượt = -5;-3;-6;-2;-8;0;4;-12;12;-20;28;-36
phần 2 dài quá vs m cx không chắc đúng nên làm phần 3 luôn
3) vì số tự nhiên chia cho 18 dư 12 có dạng là : 18k + 12
mà 18 chia hết cho 6
và 12 chia hết cho 6
nên 18k + 12 chia hết cho 6
Vậy không tồn tại số tự nhiên chia cho 18 dư 12 , còn chia 6 dư 2
2. Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
tìm nEN để
a) 15 chia hết cho n - 15
b) n + 13 chia hết cho n + 5
c) 4n + 17 chia hết cho n + 3
d) 2n + 9 chia hết cho n - 1
bài1 ; Tìm số tự nhiên n để 2n+3 chia hết cho n-2
bài 2; Tìm số tự nhiên n để 5n+13 chia hết cho n
5n+13 chia het cho n
=>13 chia het cho n
=>n thuoc Ư cua 13
Ư(13)=1;-1;13;-13
vậy n=1;-1;13;-13
tìm số tự nhiên n để 4 . n+3 chia hết cho 2.n+6
n là tập hợp các số tự nhiên
các bạn giúp mình với
Vì n giống nhau nên n=1,2,3,...( cực nhiều luôn )
Vì 4n+3 là số lẻ, 2n+6 là số chẵn nên 4n+3 ko chia hết cho 2n+6
Vậy ko có giá trị nào của n thỏa mãn đề bài
Bài 1: Cho M = 48+20+a với a là số tự nhiên
Tìm a để M chia hết cho 4, không chia hết cho 4
Bài 2: Tích A =1.2.3.4.5....20 có chia hết cho 400 không
Bài 3:
a, Tìm số tự nhiên n để n+10 chia hết cho n+1
b, Tìm số tự nhiên n để3n +40 chia hết cho n+2
Hông biết kho và nhiều thế
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10