Bài 4: Cho đoạn thẳng AB và O là trung điểm của AB. Trên hai nửa mặt phảng đối nhau bờ AB vẽ tại Ax và By cùng vuông góc với AB. Qua O vẽ 1 đ thẳng cắt Ax và By lần lượt tại C và D.
C/m AC = BD và AD = BC
Cho đoạn thẳng AB và trung điểm O của đoạn thẳng đó.Trên 2 nửa mặt phẳng đối nhau bờ AB vẽ Ax và By cùng vuông góc với AB.Qua O vẽ 1 đường thẳng cắt Ax,By lần lượt tại C và D.
CMR: AC=BD , AD=BC
vẽ đoạn thẳng BC.Trên cùng 1 nửa mặt phẳng bờ AB vẽ 2 tia Ax và By cùng vuông góc với AB . Gọi O là trung điểm của AB. trên Ax và By lấy các điểm lần lượt C và D sao cho góc COD = 90o .
CMR a, AC + BD = CD
b, AC x BC = \(\dfrac{AB^2}{4}\)
cho đoạn thẳng ab trên cùng 1 nửa mặt phẳng có bờ là đường thẳng ab vẽ hai tia ax và by lần lượt vuông góc với ab tại a và b gọi trung điểm của ab là o trên ax lấy điểm c trên by lấy điểm d sao cho góc COD bằng 90 độ
Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D.kẻ om vuông góc với cd tại m cminh OM^2=AC*BD
Cho đoạn thẳng AB, O là trung điểm AB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là 1 điểm thuộc tia Ax. Đường vuông góc với OC cắt By tại D. CMR CD = AC + BD
Gọi K là giao điểm của CO và BD
Xét \(\Delta\)AOC và \(\Delta\)BOK có :
AO = BO(gt)
\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)
\(\widehat{O}\)chung
=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)
=> OC = OK(hai cạnh tương ứng)
AC = BK(hai cạnh tương ứng)
Xét \(\Delta\)COD và \(\Delta\)KOD có :
CO = KO(gt)
\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)
OD cạnh chung
=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)
=> CD = KD(hai cạnh tương ứng)
Do đó : CD = DB + BK = DB + AC
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ hai tia Ax và By lần lượt vuông góc với AB tại A và B. Gọi O là trung điểm của đoạn thẳng AB. Trên tia Ax lấy điểm C và trên tia By lấy điểm D sao cho góc COD=90 độ.
a) Chúng minh rằng AC+BD=CD
b) Chứng minh rằng AC.BC=AB^2/4
Bạn tự vẽ hình nha
Câu a
Chứng minh : Kẻ OC cắt BD tại E
Xét ΔCAO và ΔEBO có :
ˆA=^OBE (=1v)
AO=BO (gt)
^COA=^BOE (đối đỉnh)
⇒ΔCAO=ΔEBO (cgv - gn )
⇒OC=OE ( hai cạnh tương ứng )
và AC=BE ( hai cạnh tương ứng )
Xét ΔOCD và ΔOED có :
OC=OE (c/m trên )
^COD=^DOE ( = 1v )
OD chung
⇒ΔOCD=ΔOED (cgv - cgv )
⇒CD=DE (hai cạnh tương ứng )
mà DE = BD + BE
và AC = BE ( c/m trên )
⇒CD=AC+BD
bạn có đọc nội quy không bạn Nguyễn Minh Huy, k k linh tinh nhé, (dcmm)
Cho đoạn thẳng AB, O là trung điểm của AB, trên cùng 1 nửa mặt phẳng bờ AB vẽ các tia Ax và By vuông góc với AB. Gọi C là 1 điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng: CD=AC+BD
Cho đoạn thẳng AB.Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ hai tia Ax và By lần lượt vuông góc với AB tại A và B. Gọi O là trung điểm của đoạn thẳng AB. Trên tia Ax lấy điểm C và trên tia By lấy điểm D sao cho góc COD bằng 90 .
a) Chứng minh rằng: AC + BD = CD.
b) Chứng minh rằng: AC . BD = AB2 / 4
ai chơi ngọc rồng onlie ko cho mk xin 1 nick
a) Vẽ tia CO cắt tia đối của tia By tại E
Xét tam giác vuông AOC và tam giác vuông BOE có :
AO = OB ( gt )
AOC = BOE ( 2 góc đối đỉnh )
\(\implies\) tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn )
\(\implies\) AC = BE ( 2 cạnh tương ứng )
Xét tam giác vuông DOC và tam giác vuông DOE có :
OD chung
OC = OE ( tam giác vuông AOC = tam giác vuông BOE )
\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông )
\(\implies\) CD = ED ( 2 cạnh tương ứng )
Mà ED = EB + BD
\(\implies\) ED = AC + BD
\(\implies\) CD = AC + BD
b) Xét tam giác DOE vuông tại O có :
OE2 + OD2 = DE2 ( Theo định lý Py - ta - go )
Xét tam giác BOE vuông tại B có :
OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * )
Xét tam giác BOD vuông tại B có :
OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )
Cộng ( * ) với ( ** ) vế với vế ta được :
OE2 + OD2 = 2. OB2 + EB2 + DB2
Mà OE2 + OD2 = DE2 ( cmt )
\(\implies\) DE2 = 2. OB2 + EB2 + DB2
= 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE )
= 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE
= 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE
= 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE
= 2. OB2 + DE2 - 2 . BD . BE
\(\implies\) 2. OB2 - 2 . BD . BE = 0
\(\implies\) 2. OB2 = 2 . BD . BE
\(\implies\) OB2 = BD . BE
Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt )
\(\implies\) AC . BD = ( AB / 2 )2
\(\implies\) AC . BD = AB2 / 4
a) Vẽ tia CO cắt tia đối của tia By tại E
Xét tam giác vuông AOC và tam giác vuông BOE có :
AO = OB ( gt )
AOC = BOE ( 2 góc đối đỉnh )
⇒ tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn )
⇒ AC = BE ( 2 cạnh tương ứng )
Xét tam giác vuông DOC và tam giác vuông DOE có :
OD chung
OC = OE ( tam giác vuông AOC = tam giác vuông BOE )
⇒ tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông )
⇒ CD = ED ( 2 cạnh tương ứng )
Mà ED = EB + BD
⇒ ED = AC + BD
⇒ CD = AC + BD
b) Xét tam giác DOE vuông tại O có :
OE2 + OD2 = DE2 ( Theo định lý Py - ta - go )
Xét tam giác BOE vuông tại B có :
OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * )
Xét tam giác BOD vuông tại B có :
OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )
Cộng ( * ) với ( ** ) vế với vế ta được :
OE2 + OD2 = 2. OB2 + EB2 + DB2
Mà OE2 + OD2 = DE2 ( cmt )
⇒ DE2 = 2. OB2 + EB2 + DB2
= 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE )
= 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE
= 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE
= 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE
= 2. OB2 + DE2 - 2 . BD . BE
⇒ 2. OB2 - 2 . BD . BE = 0
⇒ 2. OB2 = 2 . BD . BE
⇒ OB2 = BD . BE
Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt )
⇒ AC . BD = ( AB / 2 )2
⇒ AC . BD = AB2 / 4
cho đoạn thẳng AB, O là trung điểm của AB .trên cùng 1 nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuong góc với AB. Gọi C là 1 điểm thuộc tia Ax, đường vuông góc với O cắt tia By tại D. CMR: CD=AC+BD
nguyễn xuân hoạt nếu biết thì hãy trả lời đừng trả lời kiểu đó nhé :))
mk có học lớp 6 nên không làm đc toán toán lớp 7 thông cảm nha bạn