so sánh a= 1/2 + 2/2^2 + 3/2^3 + .......... + 100/2^100 với 2
A=1+1/2+2/3+3/4+......+99/100 so sánh với B=100-(1/2+1/3+1/4+......+1/100)
giúp mik với
ta có
\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)
Vậy A=B
So sánh S=1/2+2/2^2+3/2^+1)3+4/2^4+.....+100/2^100 với 2
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\). So sánh A với 2
Ta có
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
Suy ra \(A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)
Đặt \(n=\frac{1}{2}\) thì \(A=1+n+n^2+...+n^{99}-\frac{100}{2^{100}}\)
Xét \(B=1+n+n^2+...+n^{99}\Leftrightarrow B.n=n+n^2+n^3+...+n^{100}\)
\(\Leftrightarrow B.n=\left(1+n+n^2+...+n^{99}\right)+\left(n^{100}-1\right)\)
\(\Leftrightarrow B.n=B+n^{100}-1\Leftrightarrow B\left(n-1\right)=n^{100}-1\Leftrightarrow B=\frac{n^{100}-1}{n-1}\)
Suy ra \(A=\frac{\frac{1}{2^{100}}-1}{\frac{1}{2}-1}-\frac{100}{2^{100}}=2\left(1-\frac{1}{2^{100}}\right)-\frac{100}{2^{100}}=-\frac{102}{2^{100}}+2< 2\)
Vậy A < 2
SO SÁNH A= 100^100+2/100^99+2 và B = 100^100+3/100^101+3 GIÚP MÌNH Với !!!!!!!!!
Hong bé ơi.Bé hong follow anh mà đòi xin đáp án của anh à
Tính A=1+ 1/2+ 1/3+ ...................+1/2^100 - 1
So sánh A với 100
So sánh \(A\) với \(\dfrac{3}{4}\), biết \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
1/32< 1/2.3
1/42< 1/3.4
...
1/1002< 1/99.100
=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100
A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100
A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4
=> A < 3/4
Cho \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
so sánh với 2
Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)
\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)
\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)
Vậy A<2
Cho A= 1/2+2/22+3/23+4/24+5/25+...+99/299+100/2100. So sánh A với 2.
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(B=2B-B=2-\frac{1}{2^{99}}\)
Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
cho A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}\)+.....+\(\frac{100}{2^{100}}\)so sánh với A