so sanh 27 ^11 va 81 ^2
so sanh
a.27^11 va 81^8
b.63^15 va 34^18
cac ban giup minh vs nhe !
a. \(27^{11}=\left(3^3\right)^{11}=3^{3\cdot11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{4\cdot8}=3^{32}\)
Vì 32<33 => 332<333 => 818<2711
b. \(63^{15}=\left(63^5\right)^3=992436543^3\)
\(34^{18}=\left(34^6\right)^3=1544804416^3\)
Vì 992436543<1544804416 nên 9924365433<15448044163 => \(63^{15}< 34^{18}\)
so sanh 21^15 va 27^5
15^12 va 81^3.125^5
3^39 va 11^21
72^45-72^44 va 72^44-72^43
199^20 va 2003^15
a) \(21^{15}=21^{3.5}=\left(21^3\right)^5=9261^5\)
Vì \(9261>27\Rightarrow9261^5>27^5\Rightarrow21^{15}>27^5\)
b) \(15^{12}=\left(3.5\right)^{12}=3^{12}.5^{12}\)
\(81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{4.3}.5^{3.5}=3^{12}.5^{15}\)
Vì \(3^{12}=3^{12}\)mà \(5^{12}< 5^{15}\Rightarrow3^{12}.5^{12}< 3^{12}.5^{15}\Rightarrow15^{12}< 81^3.125^5\)
so sanh
5^28 va 26^14
5^30 va 124^10
4^21 va 64^2
12^18 va 27^16.16^9
31^11 và 17^14
125^5 va 25^7
3654 va 2^81
\(26^{14}>25^{14}=\left(5^2\right)^{14}=5^{28}\)
\(5^{30}=\left(5^3\right)^{10}=125^{10}>124^{10}\)
\(4^{21}=\left(4^3\right)^7=64^7>64^2\)
\(27^{16}.16^9=\left(3^3\right)^{16}.\left(4^2\right)^9=3^{48}.4^{18}>12^{18}=3^{18}.4^{18}\)
\(31^{11}16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(2^{56}>2^{55}\) => \(17^{14}>31^{11}\)
Các bài khác làm tương tự
so sanh 3^54 va 27^81
\(3^{54}\)và \(27^{81}\)
Ta có
\(3^{54}=\left(3^3\right)^{18}=27^{18}\)
Vì \(27^{18}< 27^{81}\Rightarrow3^{54}< 27^{81}\)
so sanh 8115 va 2710*230
Ta có :
8115 = ( 92 )15 = 930
2710 . 230 = ( 33 )10 . 230 = 330 . 230 = ( 3 . 2 )30 = 630
vì 930 > 630 nên 8115 > 2710 . 230
so sanh
(-1/16) mu 100 va (-1/2) mu 500
(1/81) mu 12 va (1/27) mu 16
(-2) mu 10 va 1000
2 mu 93 va 5 mu 35
a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{16}\right)^{100}=\left(-\dfrac{1}{2}\right)^{400}\)
\(\left(-\dfrac{1}{2}\right)^{500}=\left(-\dfrac{1}{2}\right)^{500}\)
mà \(400< 500\)
nên \(\left(-\dfrac{1}{16}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)
so sanh
a, 215 va 310
b,220va 46
c, 7.22017 va 2020
d, 2711 818
e,2115 va 275. 498
a, 2^15<3^10
b, 2^20>4^6
c,7.2^2017>2020
d,27^11>81^8
e,21^15>27^5.49^8
so sanh 9^28 va 81^11
Ta có: 81^11 = ( 9^2 )^11 = 9^22
Vì 9^28 > 9^22
=> 9^28 > 81^11
\(81^{11}=\left(9^2\right)^{^{11}}=9^{2.11}=9^{22}< 9^{28}\)
Vậy \(9^{28}>81^{11}\)
2 ngũ 6 nhân 3 mũ 3 = 64 x 27 = 1728
bai 1: so sanh
a)371320 va 111979
b)2711va 818
c)32n va 234
d)339 va 1121
e)536 va 1124
g)2115 va 27* 498
f)19920 va 200315
a/
\(37^{1320}=\left(37^2\right)^{660}=1369^{660}\)
\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(\Rightarrow1363^{660}>1331^{660}\Rightarrow37^{1320}>11^{1979}\)
b/
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
\(\Rightarrow27^{11}>81^8\)
d/
\(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 9^{21}< 11^{21}\)
e/ \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
g/ \(21^{15}=3^{15}.7^{15}\)
\(27.49^8=3^3.\left(7^2\right)^8=3^3.7^{16}\)
\(\frac{21^{15}}{27.49^8}=\frac{3^{15}.7^{15}}{3^3.7^{16}}=\frac{3^{12}}{7}>1\Rightarrow21^{15}>27.49^8\)
f/ \(199^{20}=\left(199^4\right)^5\)
\(2003^{15}=\left(2003^3\right)^5\)
\(2003^5>1990^5\)
\(\frac{1990^5}{199^4}=\frac{199^5.10^5}{199^4}=199.10^5>1\)
\(\Rightarrow2003^5>1990^5>199^4\Rightarrow2003^{15}>199^{20}\)