Chứng minh rằng tồn tại lũy thừa của 79 mà các chữ số tận cùng là 00001
Chứng minh rằng tồn tại 1 lũy thừa của 7 mà 3 chữ số tận cùng của nó là 001
Chứng minh rằng tồn tại 1 lũy thừa của 3 mà 3 chữ số tận cùng của nó là 001
Chứng minh rằng tồn tại hai lũy thừa của 2019 mà có 4 chữ số tận cùng giống nhau .
Xét 10001 số hạng 2019,20192,...,201910001
Theo nguyên lí Dirichlet co 2 số có cùng số dư khi chia co 10000
Gọi 2 số đó là 2019m và 2019n(m,n là số tự nhiên, m>n)=> 2019m-2019n=....0000
Vậy............
Chứng tỏ rằng tồn tại 1 lũy thừa của 3 sao cho nó có 2 chữ số tận cùng là 01
Lập dãy số :35;36;37;.....;3106
Ta có:100 số có dạng :00;01;02;...;99 .Theo nguyên tắc Đi-rich-lê , có 101 số có dạng 2 chữ số tận cùng nên có 2 số có 2 chữ số tận cùng giống nhau và hiệu của chúng chia hết cho 100.
Gỉa sử tồn tại hai số 13m và 13n (m>n , m,n \(\in N\))
Ta có:(13m-13n)chia hết cho 100
\(\Rightarrow13^n\left(13^{m-n}-1\right)\)chia hết cho 100
Mà ƯCLN(13,100)=1 nên 13n không chia hết cho 100
\(\Rightarrow13^{m-n}-1\)chia hết cho 100 . Nên 13m-n tận cùng là 01
Vây tồn tại một lũy thừa của 13 có 2 chữ số tận cùng là 01
Chứng minh rằng có 2 lũy thừa của số 2016 có 4 chữ số tận cùng giống nhau
CĂN CỨ VÀO CÁC YẾU TỐ SAU
-KHÍ HẬU
-LOẠI CÂY
-TÌNH HÌNH PHÁT SINH SÂU BỆNH Ở MỖI ĐỊA PHƯƠNG
Chứng minh rằng có 2 lũy thừa của 2015 có 4 chữ số tận cùng giống nhau
Chứng minh rằng có 2 lũy thừa của số 2016 có 4 chữ số tận cùng giống nhau
Ta xét 10001 số: 2017; 20172; 20173 ; ...; 201710001
Theo Đi-rích-lê thế nào cũng có 2 số có cùng số dư trong phép chia cho 10000. Gọi 2 số đó là 2017m và 2017n (m,n là số tự nhiên khác 0) => 2017m - 2017n = ...0000 Vậy 2 lũy thừa của 2017 có 4 chữ số tận cùng giống nhau
BẤM ĐÚNG CHO TỚ NHA
khó @giải giúp mình bài này với
1]tính nhanh
a}7593-1997;b}79.99;c}13.8.3+60.2+7.24
không nói linh tinh lên mạng nhá bạn
Chứng minh rằng có 2 lũy thừa của số 2016 có 4 chữ số tận cùng giống nhau
ta là phan đội tuyển anh đây