Tìm giá trị lớn nhất của biểu thức b = 2 phần x mũ 2 - 2x + 5
a) tìm giá trị nhỏ nhất của biểu thức : A= (x-2) mũ 2 + 24
b) tìm giá trị lớn nhất của biểu thức :B= -x mũ 2 + 13/5
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
Ai trả lời nhanh và đúng mik give tick xanh nhé.
bài 1 ; tìm giá trị nhỏ nhất trong các biểu thức sau ;
[ 2x - 3 } mũ 2 - [ 2x + 1 ] mũ 2 = -3
bài 2 ; tìm giá trị lớn nhất trong các biểu thức sau ;
a, B = x - xmũ 2 + 2
b, C = 6X - X MŨ 2 - 10
C, D= 4X - X MŨ 2 + 5
D, P= X - X MŨ 2 - 1
E, Q = -X MŨ 2 + 10x + 28
123
456
789
101112
ht
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
Trả lời câu hỏi giùm tui với
Tìm giá trị nhỏ nhất của biểu thức : a, ( x-2)^2 ; b, (2x-1)^2+1 Tìm giá trị lớn nhất của biểu thức a, -x^2 ; b, -2x^2+5 ; c, 1/ 2x^2+5
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
Tìm giá trị lớn nhất của biểu thức C = 5 - x mũ 2/x mũ 2 + 3
\(C=\dfrac{5-x^2}{x^2+3}=\dfrac{-x^2-3+8}{x^2+3}=-1+\dfrac{8}{x^2+3}\)
Ta có: \(x^2>=0\forall x\)
=>\(x^2+3>=3\forall x\)
=>\(\dfrac{8}{x^2+3}< =\dfrac{8}{3}\forall x\)
=>\(\dfrac{8}{x^2+3}-1< =\dfrac{8}{3}-1=\dfrac{5}{3}\forall x\)
=>\(C< =\dfrac{5}{3}\forall x\)
Dấu '=' xảy ra khi x2=0
=>x=0
Vậy: \(C_{Max}=\dfrac{5}{3}\) khi x=0
Đề bài
Chứng tỏ rằng
a) x mũ 2-6x+10>0 với mọi x
b)4x-x mũ 2-5<0 với mọi x
19.
Tìm giá trị nhỏ nhất của các đa thức
a) P=x mũ 2-2x+5 b)Q=2x mũ 2-6x c) M=x mũ 2 + y mũ 2-x+6y+10
20.
Tìm giá trị lớn nhất của các đa thức :
A=4x-x mũ 2+3 b)B=x-x mũ 2 )N=2x-2x mũ 2 -5
Đề bài
Chứng tỏ rằng
a) x mũ 2-6x+10>0 với mọi x
b)4x-x mũ 2-5<0 với mọi x
19.
Tìm giá trị nhỏ nhất của các đa thức
a) P=x mũ 2-2x+5 b)Q=2x mũ 2-6x c) M=x mũ 2 + y mũ 2-x+6y+10
20.
Tìm giá trị lớn nhất của các đa thức :
A=4x-x mũ 2+3 b)B=x-x mũ 2 )N=2x-2x mũ 2 -5
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
Tìm giá trị nhỏ nhất của biểu thức: A=x^2-2
Tìm giá trị lớn nhất của biểu thức: B= 5-x^2+2x
Tìm giá trị lớn nhất của biểu thức
M = 2x+1/x mũ 2 +2
giải
\(M=\frac{2x+1+x^2+2-x^2-2}{x^2+2}=\frac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}\)
\(M=\frac{\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\)
M lớn nhất khi \(\frac{\left(x-1\right)^2}{x^2+2}\) nhỏ nhất
Vì \(\left(x-1\right)^2\ge0\forall x\) và \(\left(x^2+2\right)>0\forall x\)nên \(\frac{\left(x-1\right)^2}{x^2+2}\) nhỏ nhất khi \(\left(x-1\right)^2=0\)
Dấu " = " xảy ra khi \(x-1=0\Leftrightarrow x=1\)
Vậy \(M_{max}=1\) khi \(x=1\)
Chúc bạn học tốt !!!
Tìm giá trị lớn nhất của biểu thức:
M = 15/ (2x + 1/3) mũ 2 +5
Ta có :
\(M=\frac{15}{\left(2x+\frac{1}{3}\right)^2+5}\)
Để M lớn nhất thì :
\(\left(2x+\frac{1}{3}\right)^2+5\) nhỏ nhất
Với mọi x ta có :
\(\left(2x+\frac{1}{3}\right)^2\ge0\)
\(\Leftrightarrow\left(2x+\frac{1}{3}\right)^2+5\ge5\)
Dấu "=" xảy ra khi :
\(\left(2x+\frac{1}{3}\right)^2=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy \(M=\frac{15}{\left(2.\frac{-1}{6}+\frac{1}{3}\right)+5}=\frac{15}{5}=3\)
Vạy ....
Cách khác
Ta có: \(\left(2x+\frac{1}{3}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^2+5\ge5\)
\(\Rightarrow\frac{1}{\left(2x+\frac{1}{3}\right)^2+5}\le\frac{1}{5}\Rightarrow\frac{15}{\left(2x+\frac{1}{3}\right)^2+5}\le\frac{15}{5}=3\)
Dấu "=" xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=\frac{-1}{6}\)
Vậy Mmax = 3 khi x = -1/6