CMR: 31/2.32/2...60/2=1.3.5...59
CMR : 31/2.32/2....60/2 = 1.3.5...59
ta có:31/2.32.2....60.2=31.32...60/2^30=(31.32.33....60).((1.2.3...30)/2^30.(1.2.3...30)=(1.3.5..59).(2.4.6...60)/(2.4.6...60)=1.3.5...59
Ta biến đổi vế phải thành vế trái:
1.3.5....59=1.3.5...59.\(\frac{2.4.6.....60}{2.4.6.....60}=\frac{1.2.3.4.....60}{\left(1.2.3....30\right).\left(2.2.2.....2\right)}=\frac{31.32......60}{2.2.......2}=\frac{31}{2}.\frac{32}{2}.....\frac{60}{2}\)
Vậy chúng = nhau
CMR:31/2.32/2.32/3...60/2=1.3.5...59
mình đang cần gấp các bạn cố giúp nha
Chứng tỏ 31/2.32/2...60/2 = 1.3.5...59
Chứng minh rằng:
a)31/2.32/2.33/2....60/2=1.3.5....59
b)2!/3!+2!/4!+2!/5!+...+2!/n! < 1
=1.48/2.2.2.2.40/2.2.2.56/2.2.2.36/2.2.44/2.2.52/2.2.60/2.2.34/2.38/2.42/2.46/2.50/2.54/2.58/2.31.33...59=1.3.5...59 cần chứng minh
Chứng tỏ 31/2.32/2...60/2=1.3.5....59
giải hộ mình thì sẽ tick đúng và follow bạn ấy nhé!
CMR: \(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}.....\frac{60}{2}=1.3.5.....59\)
\(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)
\(=\)\(\left[\left(31.32.33....60\right)\right]\)\(.\)\(\left(\frac{1.2.3....30}{2^{30}}\right)\)\(.\)\(\left(1.2.3....30\right)\)
\(=\)\(\left[\frac{\left(1.3.5....59\right).\left(2.4.6....60\right)}{2.4.6....60}\right]\)\(=\)\(1.3.5....59\)
Vậy \(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)\(=\)\(1.3.5....59\)
ta có:Đặt A= \(1.3.5.....59=\frac{1.2.3.4.....59.60}{2.4.6.....60}\)
=\(\frac{1.2.3.....59.60}{2^{30}.\left(1.2.3.....30\right)}=\frac{31.32.....59.60}{2^{30}}\)
= \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
vì \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\) = \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
\(\Rightarrow\)A= \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
( Điều phải chứng minh)
toán nâng cao lớp 6 đấy bạn nha
31/2.32/2.33/2....60/2=1.3.5..59
so sánh: P=31/2.32/2.33/2.....60/2 với Q=1.3.5.7....59
Q = 1.3.5.7...59 = \(\frac{\left(2.4.6...60\right).\left(1.3.5.7...59\right)}{\left(2.4.6...60\right)}=\frac{1.2.3.4...59.60}{2^{30}.\left(1.2.3...30\right)}=\frac{31.32.33...60}{2^{30}}=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}\)= P
Mình không hiểu, trần thị Loan làm như nào đấy giải thích rõ hơn
So sánh:P=31/2.32/2.33/2.......60/2 với Q=1.3.5.7.......59
ai nhanh nhất mk tick cho nha
\(P=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}......\frac{60}{2}=\frac{31.32.33.......60}{2.2.2........2}\)
Từ 31-60 có:60-31+1=30 (số hạng)
=>ở mẫu có 30 số hạng 2
=>\(P=\frac{32.32.33......60}{2^{30}}=\frac{\left(31.32.33.....60\right).\left(1.2.3.........30\right)}{2^{30}.\left(1.2.3.......30\right)}\)
\(P=\frac{\left(1.3.5.....59\right).\left(2.4.6......60\right)}{\left(2.4.6......60\right)}=1.3.5.....59=Q\)
=>P=Q