Chứng minh rằng nếu (n,6)=1 thì (n-1)x(n+1) chia hết cho 24 ( n thuộc N*)
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
Chứng minh rằng nếu n thuộc N , n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)
Do đó: n⋮3
Vậy ta có đpcm.
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
⇒2n+1=1(mod8)⇒2n+1=1(mod8)
=> n ⋮⋮ 4
=> n chẵn
=> n+1 cũng là số lẻ
⇒n+1=1(mod8)⇒n+1=1(mod8)
=> n ⋮⋮ 8
Mặt khác :
3n+2=2(mod3)3n+2=2(mod3)
⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ
⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Bạn tham khảo: !!!
Vì 2n-1 là số chính phương. Mà 2n-1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮4\)
\(\Rightarrow\)n chẵn
\(\Rightarrow n+1\)lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮8\)
Mặt khác
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 đều là các số chính phương lẻ
\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)
\(\Rightarrow n⋮3\)
Mà (3:8)=1
\(\Rightarrow n⋮24\)
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
chứng minh rằng , với mọi n thuộc Z , (n,6)= 1. thì n^2 - 1 chia hết cho 24
giúp tui với
chứng minh nếu(n,6)=1 thì (n-1)(n+1) chia hết cho 24
Ta thấy: (n,6)=1
=> n lẻ, đặt: n=2k+1
=> (n-1)(n+1)=(2k+1-1)(2k+1+1)=2k.2(k+1)=4k(k+1)
Ta thấy: k(k+1) là tích 2 số nguyên liên tiếp => (n-1)(n+1) \(⋮\)8
Do (n,6)=1
=> n không chia hết cho 3:
=> n=3k+1 hoặc n=3k-1
Nếu n=3k-1 => n+1 \(⋮\)3
Nếu n=3k+1 => n-1\(⋮\)3
Vậy (n-1)(n+1) \(⋮\)3 với mọi n
Mà (3,8)=1
=> (n-1)(n+1)\(⋮\)3.8=24 (ĐPCM)
giúp mình với mọi người ơi!!! Khẩn cấp!!!
1. Cho x,y thuộc N. Chứng minh rằng (x + 2y chia hết cho <=> (3x -4y) chia hêt cho 5
2. Viết liên tiếp số 2a1 (2007 lần) ta đc số chia hết cho 11. Tìm a
3. Chứng minh rằng một số chính phương hoặc chia hết cho 4 hoặc chia 4 dư 1
4. Chứng minh rằng nếu n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24.
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8