Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thế Phúc Anh
Xem chi tiết
HA MINH TRANG
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
Bong Bóng Bé
10 tháng 4 2016 lúc 10:30

Bằng nhau

Vũ Đoàn
Xem chi tiết
Nguyễn Đăng Diện
6 tháng 5 2016 lúc 9:17

Không cần giải cũng biết đáp án:

Nếu A là số dương thì A^2016>A^2015

Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015

k nha

Trần Anh Thắng
Xem chi tiết
Askaban Trần
Xem chi tiết
ST
10 tháng 5 2017 lúc 8:33

Ta có: \(A=\frac{19^5+2016}{19^5-1}=\frac{19^5-1+2017}{19^5-1}=\frac{19^5-1}{19^5-1}+\frac{2017}{19^5-1}=1+\frac{2017}{19^5-1}\)

\(B=\frac{19^5+2015}{19^5-2}=\frac{19^5-2+2017}{19^5-2}=\frac{19^5-2}{19^5-2}+\frac{2017}{19^5-2}=1+\frac{2017}{19^5-2}\)

Vì \(\frac{2017}{19^5-1}< \frac{2017}{19^5-2}\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\Rightarrow A< B\)

Vậy A < B

Lâm Trần Trúc
Xem chi tiết
Đinh Đức Hùng
10 tháng 5 2017 lúc 11:13

\(A=\frac{19^5+2016}{19^5-1}=\frac{\left(19^5-1\right)+2017}{19^5-1}=1+\frac{2017}{19^5-1}\)

\(B=\frac{19^5+2015}{19^5-2}=\frac{\left(19^5-2\right)+2017}{19^5-2}=1+\frac{2017}{19^5-2}\)

Vì \(19^5-1>19^5-2\) nên \(\frac{2017}{19^5-1}< \frac{2}{19^5-2}\)

\(\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\)

Vậy \(A< B\)

Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Thiên Kim
26 tháng 9 2016 lúc 19:53

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Cô Hoàng Huyền
23 tháng 9 2016 lúc 14:23

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

Shinichi_kun
Xem chi tiết
Do Kyung Soo
16 tháng 1 2016 lúc 22:21

A<1

bn tick mk nha cho mk thoat am ngay de con an mung

Shinichi_kun
16 tháng 1 2016 lúc 22:22

các bạn giải chi tiết hộ mik

Linh
16 tháng 1 2016 lúc 22:42

A < 1