chứng tỏ rằng 98^15-1 chia hết cho 97
Nhanh and nhanh, mk còn 13 bài nữa, cô ra nhiều zdữ ! :V
Chứng tỏ rằng A=1+3+3^ 2 +3^ 3 +...3^ 97 +3^ 98 chia hết cho 13
\(A=\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\cdot\left(1+...+3^{96}\right)⋮13\)
Cho M 1 1 2 1 3 ... 1 98 .2.3.4 ... 98. Chứng tỏ rằng M chia hết cho 97
Chứng tỏ rằng : 1 + 7 + 72 + ....... + 798 chia hết cho 57
ai nhanh mk sẽ tick
Đặt A = 1 + 7 + 72 + ... + 798
=> A = 70 + 71 + 72 + ... + 798
=> A = ( 70 + 71 + 72 ) + ( 73 + 74 + 75 ) + ... + ( 796 + 797 + 798 )
=> A = 70 . ( 70 + 71 + 72 ) + 73 . ( 70 + 71 + 72 ) + ... + 796 . ( 70 + 71 + 72 )
=> A = 70 . 57 + 73 . 57 + ... + 796 . 57
=> A = 57 . ( 70 + 73 + ... + 796 ) \(⋮\)57
Đặt S = \(1+7+7^2+..........+7^{98}\)
\(\Rightarrow S=7^0+7^1+7^2+.............+7^{98}\)
\(\Rightarrow S=\left(7^0+7^1+7^2\right)+\left(7^3+7^4+7^5\right)+..........+\left(7^{96}+7^{97}+7^{98}\right)\)
\(\Rightarrow S=7^0.\left(7^0+7^1+7^2\right)+7^3.\left(7^0+7^1+7^2\right)+............+7^{96}.\left(7^0+7^1+7^2\right)\)
\(\Rightarrow S=7^0.57+7^3.57+..........+7^{98}.57\)
\(\Rightarrow S=57.\left(7^0+7^3+.........+7^{98}\right)\)
Mà 57 \(⋮\)57 \(\Rightarrow57.\left(7^0+7^3+..........+7^{98}\right)⋮57\)
Vậy tổng S chia hết cho 57
Chứng minh rằng : A=1×98+2×97+3×96+. . . . .+96×3+97×2+98×1/1×2+2×3+3×4+. . . . .+96×97+97×98+98×99=1/2
Ai giải ra nhanh và sớm nhất mk sẽ tk cho 5 tk lun
Thank you very good!
Bạn tìm ở link này nha: https://olm.vn/hoi-dap/tim-kiem?q=+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng+1.98+2.97+3.96+...+96.3+97.2+98.11.2+2.3+3.4+...+96.97+97.98+98.99+=1/2+&id=517786
Chứng tỏ rằng tổng sau luôn chia hết cho 15 :
2^0+2^1+2^2+......+2^15
Nhanh hộ mk nha
Đặt tổng trên = A
Có : A = 1+2+2^2+...+2^15
= (1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+....+(2^12+2^13+2^14+2^15)
= 15 + 2^4.(1+2+2^2+2^3)+...+2^12.(1+2+2^2+2^3)
= 15+2^4.15+...+2^12.15
= 15.(1+2^4+...+2^12) chia hết cho 15
=> ĐPCM
k mk nha
a) Cho A = 2 + 22 + 23 +...+ 260. Chứng tỏ rằng A chia hết cho 3;7 và 15
b) Cho B = 1 + 5 + 52 + 53 +...+ 597 + 598. Chứng tỏ rằng B chia hết cho 31
a, Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 (chẳng hạn 328 328 chia hết cho 11).
ai nhanh mk tick rất nhiều
164164
246246
328328
410410
492492
656656
820820
984984
ta có:
abc abc=a.100 000 + b.10 000 + c.1 000 + a.100 + b.10 + c
=a.100 100 + b.10 010 + c.1 001
=a.9 100.11 + b.910.11 + c.99.11
=11.(a.9100 + b.910 + c.99)
mà 11.(a.9100 + b.910 + c.99) chia hết cho 11
vậy abc abc chia hết cho 11(đpcm)
Cho A=2+22+23+....+260
Chứng tỏ rằng A chia hết cho 3,7 và 15
Cho B=1+52+53+....+596+597+598
Chứng tỏ rằng B chia hết cho 31
Mọi người giúp mình bài này nha . Arigatou
Bài 1. chứng tỏ rằng 175 + 244 - 1321 chia hết cho 10 .
Bài 2.chứng minh rằng với mọi số tự nhiên n :
a. 74n - 1 chia hết cho 5
b. 34n + 1 + 2 chia hết cho 5
c. 24n + 1 + 3 chia hết cho 5
d.24n + 2 + 1 chia hết cho 5
e. 92n + 1 + 1 chia hết cho 10
giúp mk vs ạ ai nhanh mk tick cho mk đang cần gấp trong ngày hôm nay đó ạ giúp vs ạ cảm ơn trước
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)