So sánh M=1/31+1/32+1/33+...+1/60 và 4/5
So sánh C = 1/31+1/32+1/33+...+1/60 và 4/5
cho tổng A = 1/31 + 1/32 + 1/33 + ..... + 1/59 + 1/60 . hãy so sánh A với 4/5
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
So sánh S và 4/5
ớ chết, mk nhầm, lm lại nha
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)
\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)
=> \(S< \frac{4}{5}\)
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S< 30.\frac{1}{60}\)
\(S< \frac{1}{2}< \frac{4}{5}\)
\(S< \frac{4}{5}\)
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)
\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)
\(V\text{ậy}:S< \frac{4}{5}\)
Cho E =1/31+1/32+1/33+...+1/60
So sánh E với 4/5
Bác nào làm được thì giúp em với mai thi rùi
(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)
E = 1/31+1/32+...+1/60
E > 1/40+1/40+...+1/40+1/41+1/42+...+1/60
E > 20/40+1/41+1/42+...+1/60
E > 1/2+1/60+1/60+...+1/60
E > 1/2 + 1/3 = 5/6
Mà 5/6 > 4/5
=> E > 4/5
Cho C =1/31 + 1/32 + ....+ 1/60 so sánh C và 4/5
cho tổng A = 1/31 + 1/32 + 1/33 + ....... + 1/59 + 1/60 . hãy so sánh A với 4/5
các bạn giải đầy đủ hộ mk nha
thank you
So sánh P và Q , biết rằng
P=31/2×32/2×33/2×......×60/2 và Q=1×3×5×.....×59?
So sánh A và B :
A=1/31 + 1/32 + 1/33+....+1/60
B=1/1.2+1/3.4+1/5.6+.....1/59.60
\(\text{Có 3 trường hợp có thể xảy ra:}\)
\(A=B\)
\(A< B\)
\(A>B\)
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(Mà:\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}.10=\frac{1}{4}\left(\text{10 số hạng}\right)\)
\(\text{Tương tự}:\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(\Rightarrow A>\frac{37}{60}\)
\(Mà\)\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{3}{5}\)
\(\Rightarrow A>\frac{3}{5}\)
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{31}.10=\frac{10}{30}=\frac{1}{3}\left(\text{10 số hạng}\right)\)
\(\Rightarrow A< \frac{4}{5}\)
\(\Rightarrow\frac{3}{5}< A< \frac{4}{5}\)
\(\text{Mik chỉ pít làm z!!!☺}\)
Cho E = 1/31+1/32+1/33+...+1/60
So sánh E với 4/5
Các bác nào làm được thì giúp em với mai em thi rùi.
E = (1/31 +1/32+ 1/33 +1/34+ 1/35 +1/36+ 1/37 +1/38 + 1/39 +1/40) +
( 1/41 +1/42+ 1/43 +1/44+ 1/45 +1/46+ 1/47 +1/48 + 1/49 +1/50)+
(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)
Mà (1/31 +1/32+ 1/33 +1/34+ 1/35 +1/36+ 1/37 +1/38 + 1/39 +1/40) < ( 1/31 . 10) = 1/ 3 ( 10 số hạng)
Tương tự :( 1/41 +1/42+ 1/43 +1/44+ 1/45 +1/46+ 1/47 +1/48 + 1/49 +1/50)<1/4 và
(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)< 1/5
(1/3 + 1/4 + 1/5 ) < 4/5 ( dpcm)
Ưu ái lắm nha!