Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tài Bảo Châu
Xem chi tiết
Lê Diêu
24 tháng 4 2019 lúc 6:31

a)  Tam giác ABO và tam giác AEO có:

Góc AOB = góc AOE (=90 độ)

Góc BAO = góc EAO (AO là phân giác góc BAE)

Cạnh AO chung

=> tam giác ABO = tam giác AEO (g-c-g)    (1)

b)  Từ (1) => AB = AE => tam giác BAE cân tại A      (2)

c)  Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE 

=> AD là đường trung trực của BE

d)  Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.

Gọi H là giao điểm của EM và AB => EH  đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE

=> EM vuông góc AB

mà BC vuông góc AB (gt)

=> EM // BC

Nguyen Ngoc
Xem chi tiết
minh son
Xem chi tiết
tth_new
21 tháng 7 2019 lúc 8:43

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

tth_new
21 tháng 7 2019 lúc 9:03

A, nghĩ ra rồi nè:) (đúng hay không là chuyện khác:v)

Bỏ cái dòng "Thật vậy, từ N hạ NF vuông góc với BC, hạ NG vuông góc với AB" đi nha, thừa thãi không cần thiết => gây khó bài toán.

d)Ta sẽ chứng minh \(\Delta NHM=\Delta NKM;\Delta MHD=\Delta MKA\)

Xét  \(\Delta\) NHM và \(\Delta\) NKM  có:

^NKM = ^NHM = 90o

NM là cạnh chung đồng thời là cạnh huyền

^NMK = ^NMH (chứng minh trên câu c: MN là tia phân giác góc HMK)

Suy ra   \(\Delta\) NHM = \(\Delta\) NKM  (cạnh huyền - góc nhọn)

Suy ra NK = NH (1) và MK = MH (2)

Xét \(\Delta\)MHD và \(\Delta\) MKA có:

MK = MH (chứng minh ở (2))

^KMA = ^HMD (đối đỉnh)

MA = MD (do tam giác DBM = tam giác ABM ,đã chứng minh ở câu a)

Suy ra  \(\Delta\)MHD = \(\Delta\) MKA  (c.g.c)  (nếu ko thì bạn có thể chứng minh theo trường hợp cạnh huyền góc nhọn cũng ra nhé)

Suy ra KA = HD (3)

Từ (1) và (3) suy ra KA + NK = HD + MH tức là AN = ND.

Tới đây dễ dàng chứng minh được \(\Delta NDB=\Delta NAB\left(c.c.c\right)\Rightarrow\widehat{NBD}=\widehat{NBA}\) suy ra BN là tia phân giác góc B.

Kết hợp với BM là tia phân giác góc B (giả thiết) ta có đpcm.

Lan
Xem chi tiết
oOo Tôi oOo
18 tháng 4 2016 lúc 8:04

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

HUNG
Xem chi tiết
quynh anh
Xem chi tiết
Anh Thu
Xem chi tiết
Hoàng Diệu Nhi
23 tháng 12 2017 lúc 19:28

A B C D I K

a)Xét tam giác ABD và tam giác ACD có:

AB=AC (gt)

BD=DC (vì D là trung điểm của BC)

AD là cạnh chung

=>tam giác ABD =tam giác ACD (c.c.c)

b)Xét tam giác BID và tam giác CID có:

BD=DC (vì D là trung điểm của BC)

ADB=ADC=90 độ (vì D là trung điểm của BC)

ID là cạnh chung

=>tam giác BID=tam giác CID (c.g.c)

=>BI=IC (2 cạnh tương ứng)

c) Câu c mình không hiểu đề cho lắm ý bạn là góc BAC=2 làn góc IBC

Lùn Tè
23 tháng 12 2017 lúc 19:45

a. Ta có AB = AC ( gt) 

=> Tam giác ABC cân tại A

Nối AD ta được đường trung trực AD 

=> AD cũng là đường cao ( tính chất của tam giác cân)

Vì tam giác ABC cân nên góc BAD = góc CAD 

Xét tam giác ABD và tam giác ACD có:

AD chung

góc BAD = góc CAD (cmt)

AB=AC (gt)

=> tam giac ABD = tam giác ACD ( c.g.c)

b. Xét tam giác BID và tam giác CID có:

ID chung 

BD =DC ( gt)

góc IDB = góc IDC = 900

=> tam giác BID= tam giác CID ( 2 cạnh góc vuông)

=> IB =IC ( 2 cạnh tương ứng )

c. chưa nghĩ ra :))

Lê Tài Bảo Châu
Xem chi tiết
Nguyễn Thị Anh Thư
Xem chi tiết
Nguyễn Tất Đạt
15 tháng 1 2018 lúc 12:51

A B C I D E H

Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)

=> Tam giác CIE = Tam giác BID (c.g.c)

^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong

=> CE//BD hay BD//CH. Mà BD vuông góc với AB

=> CH vuông góc với AB (Quan hệ //, vg góc) 

=> Tam giác AHC vuông tại H (đpcm).