Chứng minh rằng S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\) nhỏ hơn 1
Chứng minh rằng \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}< 1\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(\Rightarrow2S=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(S=1-\frac{2}{2^{20}}\)
\(\Rightarrow S< 1\left(đpcm\right)\)
Ta có :\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(S=\frac{1\cdot2^{19}}{2\cdot2^{19}}+\frac{1\cdot2^{18}}{2^2\cdot2^{18}}+\frac{1\cdot2^{17}}{2^3\cdot2^{17}}+...+\frac{1\cdot2}{2^{19}\cdot2}+\frac{1}{2^{20}}\)
\(S=\frac{2^{19}}{2^{20}}+\frac{2^{18}}{2^{20}}+\frac{2^{17}}{2^{20}}+...+\frac{2}{2^{20}}+\frac{1}{2^{20}}\)
\(S=\frac{2^{19}+2^{18}+2^{17}+...+2^1+1}{2^{20}}\)
\(S=\frac{2^0+2^1+2^2+...+2^{19}}{2^{20}}\)
Xét: Gọi \(N=2^0+2^1+2^2+...+2^{19}\)
\(2\cdot N=2^1\cdot2^2\cdot2^3\cdot...\cdot2^{20}\)
\(2\cdot N-N=\left(2^1+2^2+2^3+...+2^{20}\right)-\left(2^0+2^1+2^2+...+2^{19}\right)\)
\(N=2^{20}-2^0\)
Thay N vào S, ta có :
\(S=\frac{2^{20}-2^0}{2^{20}}\)
\(S=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)
\(S=1-\frac{1}{2^{20}}\)
Vì \(1-\frac{1}{2^{20}}< 1\Rightarrow S< 1\left(Đpcm\right).\)
Vậy : \(S< 1.\)
Bài 1: chứng minh rằng
\(\frac{\sqrt{2}-\sqrt{1}}{2+1}\:+\frac{\sqrt{3}-\sqrt{2}}{3+2}+.\:.\:.\:+\frac{\sqrt{100}-\sqrt{99}}{100+99}< \frac{9}{20}\)
Bài 2: tìm x để \(1+\frac{3}{\sqrt{X}}\) nhỏ hơn hoặc bằng 0
Chứng minh rằng:
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}<2\)
Bạn nhân S với 2
Lấy 2S-S=1-1/(2^20)
S=1/(2^20) nên < 2
Cần làm đầy đủ hơn thì bảo mình
Ta có : 1/2 < 1
1/2^2 < 1/2
..............
1/2^19 < 1/2^20
Suy ra 1/2+1/2^2+......+1/2^19<1+1/2+1/2^2+......+1/2^20
Suy ra 1/2+1/2^2+.......+1/2^19+1/2^20<1+1/2+1/2^2+.....+1/2^20+1/2^20
Suy ra S<S+1+1/2^20
Suy ra S<S+1+1/2^20<2
Suy ra S<2
Chứng minh rằng :
S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}<1\)
Ta có: S = 1/ 2 + 1/ 2^2 + 1/ 2^3 + ... + 1/ 2^20
Nên 2S = 1 + 1/2 + 1 / 2^2 + 1/ 2^3 + .... + 1/ 2^19
Do đó 2S - S = 1 - 1/ 2^20 < 1
Vậy S < 1
2S=\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
2S-S=1-\(\frac{1}{2^{20}}\)
S=\(1-\frac{1}{2^{20}}<1\)
S<1
cho S =\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\)
chứng minh rằng S lớn hơn 2
Trừ 1 đi thì ta chỉ cần chứng minh từ \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\) \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\) \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\) ....... cứ nhu vậy cho đến \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy S < 2
Chứng minh rằng ;
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{199}{99^2.100^2}\) nhỏ hơn 1
Chứng minh rằng : S = \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+ .....+\(\frac{1}{2^{20}}\)< 1.
ta có
S = \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+ .....+\(\frac{1}{20^{20}}\)
2S= 1 + \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+ .....+\(\frac{1}{2^{19}}\)
S = 2S-S= 1 - \(\frac{1}{2^{19}}\)<1
Vậy S < 1
^_^ chúc bn học tốt
dạng 1 : so sánh
a) P = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và Q = \(1\frac{3}{4}\)
dạng 2 : toán chứng minh
1. cho S = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{130}\)chứng minh rằng : \(\frac{1}{4}< S< \frac{91}{330}\)
2. cho S = \(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). CMR : 3 < S < 8
3. CMR : \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
2.a) Vào question 126036
b) Vào question 68660
Cho n là số nguyên nhỏ hơn 1. Chứng minh rằng \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\)
Giúp mk với cần gấp nha. Mình sẽ tick cho . cảm bơn nhiều <3 <3 <3
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}\)
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{n-1}-\frac{1}{n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\)
\(\Rightarrowđpcm\)
Gọi vế trái là A. Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}=\frac{1}{n-1}-\frac{1}{n}.\)
=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
=> \(A< 2-\frac{1}{n}\) (ĐPCM)