Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc An Hy
Xem chi tiết
phạm hoàng minh
Xem chi tiết
Bế Long Nhật
9 tháng 5 2021 lúc 20:33

A B C D

a) Xét ABD và EBD có

        BD cạnh chung

        BAD=BED(=90)

        ABD=EBD(vì BD là tia phân giác của B)

b ko biet

 

Bế Long Nhật
9 tháng 5 2021 lúc 21:20

c) vì theo ý b) ADE là tam giác cân tại D nên theo py-ta-go AD+DE=AE

Nên AE>AD

(sai đầu bài rồi)

Bế Long Nhật
9 tháng 5 2021 lúc 21:20

b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân

Nguyễn Linh Anh
Xem chi tiết
Phan Quốc Việt
Xem chi tiết
yến
29 tháng 4 2016 lúc 19:50

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

Phan Quốc Việt
Xem chi tiết
Xuân Trà
30 tháng 4 2016 lúc 18:34

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

Phan Quốc Việt
Xem chi tiết
OoO Love Forever And Onl...
30 tháng 4 2016 lúc 19:05

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

Vương Nguyên
30 tháng 4 2016 lúc 19:41

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

Nhung Nguyễn
30 tháng 4 2016 lúc 19:58

3. a.

xét tg ABD & EBD:

ABD=EBD(fan giác BD)

BAD=BED(=90độ)

BD(cạnh chung)

suy ra tg ABD=EBD(ch-gn)

sra: BA= BE(cctuong ung)

sra: B thuộc trung trực AE(1)

sra: AD=De(cctuong ung)

sra: D thuộc trung trực AE(2)

từ (1) và(2) sra: BD là trung trực AE

b. xét tg ADFvàEDF

AD=DE(cmt)

ADF=EDC(đối đỉnh)

DAF=DEC(90 độ)

sra: tg ADF=EDF(gcg)

sra:DF=DC(cct ứng)

c.tg EDC: ED<DC(cgv<ch)

mà ED=AD

sra: AD<DC

4.

a.xét tg ABE & HBE:

ABE=EBH(fan giác BD)

BAE=BHE(=90độ)

BE(cạnh chung)

suy ra tg ABE=HBE(ch-gn)

b.      sra: BA= BE(cctuong ung)

sra: B thuộc trung trực AH(1)

sra: AE=He(cctuong ung)

sra:E thuộc trung trực AE(2)

từ (1) và(2) sra: BE là trung trực AH

c. xét tg AEKvàHEC

AE=HE(cmt)

ADF=EDC(đối đỉnh)

AEK=HEC(90 độ)

sra: tg AEK=HEC(gcg)

sra:DF=DC(cct ứng)

tg HEC: EH<EC(cgv<ch)

mà EA=EH

sra:EA<EC

5.

a. 

Tg ABC cân: AM là trung tuyến

sra: Am là phân giác góc BAC(tính chất tam giác cân)

b. 

xét tg ABD và ACD:

AB=AC(tg ABC cân)

BAD=CAD(fan giác Am)

AD (cạnh chung)

sra: tg ABD= ACD( cgc)

c. ta có: BD=CD(cctuong ứng)

sra: tg BCD cân tại D

6.

a.

vì D thuộc tia phân giác góc ABC

sra: DA=DH( D cách đều 2 cạnh của góc)

b.

tg HDC: HD<DC(cgv<ch)

mà DA=DH(cmt)

sra DA< DC

c. 

Tg BKC: D là trực tâm

sra: BD vuông góc KC

mà BD là phân giác góc KBC

sra: tg BKC cân 

Nguyễn Linh Anh
Xem chi tiết
Hoang thi huyen
12 tháng 1 2017 lúc 11:20
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
nguyenvankhoi196a
6 tháng 11 2017 lúc 16:55

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

Haruhiro Miku
29 tháng 3 2018 lúc 18:05

Bài làm

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau:

 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2.

Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7

Ta làm như sau: 6 - 7

Không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5.

Vậy 8,6 - 2,7 = 5,9

Sei Nguyễn
Xem chi tiết
Nguyễn Thị Nghiên
30 tháng 4 2021 lúc 13:08

undefinedundefined

Nguyễn Minh Huy
Xem chi tiết
Cô Hoàng Huyền
28 tháng 2 2018 lúc 15:24

a)

+) Do tam giác ABC cân tại A nên trung tuyến AH đồng thời là đường caio.

Vậy nên \(\widehat{AHB}=90^o\)

Theo tính chất góc ngoài của tam giác, ta có:

\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

\(\widehat{IAB}=\widehat{CBE}\)  (cmt)

\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)

+) Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)

Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)

Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)

b) Gọi O là trung điểm MN. Ta thấy DN và DM là phân giác của hai góc kề bù nên chúng vuông góc với nhau.

Vậy tam giác DMN vuông tại D. Khi đó ta có DO là trung tuyến ứng với cạnh huyền nên DO  =  MN/2

Vậy DO = OM = OM hay các tam giác DOM và DON cân tại O.

Ta có: \(\widehat{DOM}=180^o-2\widehat{DMO}=180^o-2\left(\widehat{MDB}+\widehat{MBD}\right)\)

\(=180^o-2.\widehat{MDB}-2.\widehat{MBD}=180^o-\widehat{BDC}-\widehat{ABC}\)

\(=180^o-\widehat{BDC}-\widehat{ACB}=\widehat{DBO}\)

Vậy tam giác DBO cân tại D hay DB = DO.

Vậy nên BD = MN/2.

Nguyen Ngoc Duy
25 tháng 8 2018 lúc 8:24

xét tam giác BAI va CBE

be=ab

bc=ia

iab=ebc

=>tam giác BAI=tam giác CBE

vuong dinh thang
12 tháng 2 2019 lúc 21:07

2222222🐥