Tính A=2/1.3-4/3.5+6/5.7-8/7.9+...-20/19.21
Tính giá trị biêut hức;B=2/1.3-4/3.5+6/5.7-8/7.9+...-96/95.97+98/97.99
tính 6/3.5+6/5.7+6/7.9+...+6/19.21
MONG CÁC BẠN GIÚP ĐỠ
\(\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{19.21}\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=3.\frac{2}{7}\)
\(=\frac{6}{7}\)
Giá trị biểu thức B = 1/1.3 + 1/3.5 + 1/5.7 +...+ 1/19.21
A.10/21
B22/21
c.6/21
D.20/21
Ta có:
A= 1/1.3 + 1/3.5 + .....+ 1/5.7 +......+ 1/19.21
2.A = 2/1.3 + 2/3.5 + 2/5.7 +...+ 2/19.21
2.A= 1- 1/3+ 1/3- 1/5+ 1/5- 1/7+............+ 1/19 - 1/21
2.A= 1- 1/21
2.A = 20/21
A= 20/21 : 2
A = 10/21
=> D
=>A mk nhầm
xl nhé hnay nt hiều quá 100 lần r lên k nt đc rất xl
Tính tổng: 4/1.3+4/3.5+4/5.7+4/7.9+....+4/2011.2013
\(\frac{4}{1.3}\)+\(\frac{4}{3.5}\)+\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{2011.2013}\)
= 1+\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{5}\)-\(\frac{1}{5}\)+\(\frac{1}{7}\)-\(\frac{1}{7}\)+\(\frac{1}{9}\)+...+\(\frac{1}{2011}\)+\(\frac{1}{2013}\)
=1+ 0 + 0 + 0 +...+ 0 + \(\frac{1}{2013}\)
=1+\(\frac{1}{2013}\)
=\(\frac{2014}{2013}\)
k dùm nha
\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{2011\cdot2013}\)
\(=2\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2011\cdot2013}\right)\)
\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=2\cdot\left(1-\frac{1}{2013}\right)\)
\(=2\cdot\frac{2012}{2013}\)
\(=\frac{4024}{2013}\)
Đặt A ta có : \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{2011.2013}\)
\(2A=4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}...+\frac{1}{2011.2013}\right)\)
\(2A=4\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(2A=4\left(1-\frac{1}{2013}\right)\)
\(2A=4.\frac{2012}{2013}\)
\(2A=\frac{8048}{2013}\)
\(\Rightarrow A=\frac{4024}{2013}\)
tính nhanh tổng của 100 số hạng đầu tiên của dãy
a) 1.3 ; 3.5 ; 5.7 ; 7.9 ; ...
b) 1/6 ; 1/66 ; 1/176 ;1/336 ;...
c) 1/2 ; 1/6 ; 1/12 ; 1/20 ;...
A=2/1.3-2/3.5-2/5.7-...-2/19.21-2/21.23-2/23.25-1/27
A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)
A=\(\dfrac{227}{675}\)
{ 1/3.5+1/5.7+1/7.9+.....+1/19.21
tính tổng S=2/1.3+2/3.5+2/5.7+2/7.9+2/9.11
\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)
tính k = 1.3/3.5+ 2.4/5.7+3.5/7.9+...+1002.1004/2005.2007