(a+a2+a3+a4+........a28+a29+a30)chia hết cho (a+1)
chứng minh: (a+a2+a3+a4+...+a29+a30)chia hết cho (a+1) với a thuộc N
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+\left(a^5+a^6\right)+...+\left(a^{29}+a^{30}\right)=\)
\(=a\left(a+1\right)+a^3\left(a+1\right)+a^5\left(a+1\right)+...+a^{29}\left(a+1\right)=\)
\(=\left(a+1\right)\left(a+a^3+a^5+...+a^{29}\right)⋮\left(a+1\right)\)
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5).CMR A luôn chia hết cho 288
Bạn xem hướng dẫn ở đây:
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :
A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5)
CMR A luôn chia hết cho 288
Bạn xem hướng dẫn ở đây:
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
cmr:(a1-a2)(a1-a3)(a1-a4)(a2-a3)(a2-a4)(a3-a4) chia hết cho 12
Cho đồng nhất thức (1+x+x2)15=a0+a1x+a2x2+.......+a30x30(1+x+x2)15=a0+a1x+a2x2+.......+a30x30
Đặt S=a0+a1+a2+a3+a4+........+a30S=a0+a1+a2+a3+a4+........+a30. Tính giá trị của S
Cho n số a1, a2, a3, a4, a5,..., an và mỗi số bằng 1 hoặc -1. CMR Sn = a1.a2 + a2.a3 + a3.a4 + a4.a5 + a5.a6 +...+ an.a1 = 0 khi và chỉ khi n chia hết cho 4.
Help me!!!!!!!!!!!!!!
Ai giải đúng cho 1 tick nha!
cho 5 số nguyên phân biệt a1,a2,a3,a4,a5 . Xét tích : P=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5).Chứng minh P chia hết cho 288
giúp mk đi các bn mk cần gấp ko thì mk phải viết bản kiểm điểm đấy
cầu xin
bn có thể lên trang học 24h mà kb với những người từ lp 6 trở lên rồi hỏi bài họ là đc mà!
tk nha!
cho 5 so nguyen phan biet a1,a2,a3,a4,a5.Xet tich:P=(a1-a2)*(a1-a3)*(a1-a4)*(a1-a5)*(a2-a3)*(a2-a4)*(a2-a5)*(a3-a4)*(a3-a5)*(a4-a5).Chung minh P chia het cho 288
cho các số thực ko âm a1,a2,a3.a4,a5 thỏa mãn a1+a2+a3+a4+a5=1
tìm Max A=a1*a2+a2*a3+a3*a4+a4*a5
Ko mất tính tổng quát giả sử \(a_1=\text{max}\left\{a_2;a_3;a_4;a_5\right\}\).
Áp dụng BĐT AM-GM ta có:
\(a_1a_2+a_2a_3+a_3a_4+a_4a_5\le a_1\left(a_2+a_3+a_4+a_5\right)\)
\(\le\frac{\left(a_1+a_2+a_3+a_4+a_5\right)^2}{4}=\frac{1}{4}\)
Xảy ra khi có 2 số bằng \(\frac{1}{2}\) và 3 số còn lại bằng 0