tim X
z(3x – 9). (121 – x2) = 0
Tim so thuc X,biet:
(3x-5/12)^2-121/64=0
tim x :
( 2x+3)2=9/121
( 3x-1)3=-8/27
\(\left(2x+3\right)^2=\frac{9}{121}\)
\(\left(2x+3\right)^2=\left(\frac{3}{11}\right)^2\)
\(\Rightarrow2x+3=\frac{3}{11}\text{ hoặc }2x+3=\frac{-3}{11}\)
\(2x=\frac{3}{11}-3\text{ hoặc }2x=\frac{-3}{11}-3\)
\(2x=\frac{3}{11}-\frac{33}{11}\text{ hoặc }2x=\frac{-3}{11}-\frac{33}{11}\)
\(2x=\frac{-30}{11}\text{ hoặc }2x=\frac{-36}{11}\)
\(x=\frac{-30}{11}:2\text{ hoặc }x=\frac{-36}{11}:2\)
\(x=\frac{-30}{11}.\frac{1}{2}\text{ hoặc }x=\frac{-36}{11}.\frac{1}{2}\)
\(x=\frac{-15}{11}\text{ hoặc }x=\frac{-18}{11}\)
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
Tìm X
e) – 40 – (– 3 – 33) + (40 – x) = – (– 47) f) x(3x – 9). (121 – x2) = 0
g) – 62 – (38 + x) + 2x = – 100 h) (x + 1)2.(x2 + 1) = 0
i) (x – 12) – (2x + 31) = 6 k) 17/ (x + 3)3 : 3 – 1 = – 10
e: =>-40+3+33+40-x=47
=>36-x=47
=>x=-11
f: =>x(x-3)(11-x)(11+x)=0
hay \(x\in\left\{0;3;11;-11\right\}\)
g: =>-62-38-x+2x=-100
=>x-100=-100
hay x=0
Tìm X
e) – 40 – (– 3 – 33) + (40 – x) = – (– 47) f) x(3x – 9). (121 – x2) = 0
g) – 62 – (38 + x) + 2x = – 100 h) (x + 1)2.(x2 + 1) = 0
i) (x – 12) – (2x + 31) = 6 k) 17/ (x + 3)3 : 3 – 1 = – 10
Tìm X
e) – 40 – (– 3 – 33) + (40 – x) = – (– 47) f) x(3x – 9). (121 – x2) = 0
g) – 62 – (38 + x) + 2x = – 100 h) (x + 1)2.(x2 + 1) = 0
i) (x – 12) – (2x + 31) = 6 k) 17/ (x + 3)3 : 3 – 1 = – 10
i: =>x-12-2x-31=6
=>-x-43=6
=>x+43=-6
hay x=-49
h: =>(x+1)=0
=>x=-1
f: =>x(x-3)(x+11)(x-11)=0
hay \(x\in\left\{0;3;-11;11\right\}\)
cho x,y,z>0, xz+yz+3x+y=2xz+yz+5x=1
tim GTLN, GTNN cua P=xy(z+2)
(x2 + 9) (9x2 -1) = 0
(4x2 -9) (2x-1 -1) =0
( 3x+2) (9-x2 ) =0
(3x+3)2 ( 4x - 42 ) =0
2(x-5) ( x+2) =1
a: (x^2+9)(9x^2-1)=0
=>9x^2-1=0
=>x^2=1/9
=>x=1/3 hoặc x=-1/3
b: (4x^2-9)(2^(x-1)-1)=0
=>4x^2-9=0 hoặc 2^(x-1)-1=0
=>x^2=9/4 hoặc x-1=0
=>x=1;x=3/2;x=-3/2
c: (3x+2)(9-x^2)=0
=>(3x+2)(3-x)(3+x)=0
=>\(\left[{}\begin{matrix}3x+2=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};3;-3\right\}\)
d: (3x+3)^2(4x-4^2)=0
=>3x+3=0 hoặc 4x-16=0
=>x=4 hoặc x=-1
e: \(2^{\left(x-5\right)\left(x+2\right)}=1\)
=>(x-5)(x+2)=0
=>x-5=0 hoặc x+2=0
=>x=5 hoặc x=-2
Phân tích các đa thức sau thành nhân tử:
a) 2xy + 3z + 6y + xz; b) a 4 - 9 a 3 + a 2 - 9a;
c) 3 x 2 + 5y - 3xy + (-5x); d) x 2 - (a + b)x + ab;
e) 4 x 2 - 4xy + y 2 - 9 t 2 ; g) x 3 – 3 x 2 y + 3x y 2 – y 3 – z 3
h) x2 - y2 + 8x + 6y + 7.
a) Cách 1.
Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)
= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).
Cách 2.
Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)
= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).
b) Biến đổi được a 4 - 9 rt 3 + a 2 -9a = (a- 9)a( a 2 +1).
c) Biến đổi được 3 x 2 + 5y - 3xy + (-5x) = (x - y)(3x - 5).
d) Biến đổi được x 2 - (a + b)x + ab = (x- a)(x - b).
e) Ta có 4 x 2 - 4xy + y 2 – 9 t 2 = ( 2 x - y ) 2 - ( 3 t ) 2
= (2x - y - 3t )(2x - y + 31).
g) Ta có x 3 - 3 x 2 y + 3 xy 2 - y 3 - z 3
= ( x - y ) 3 - z 3 = (x - y - z)( x 2 + y 2 + z 2 - 2xy + xz - yz).
h) Ta có x 2 - y 2 + 8x + 6y+ 7 = ( x 2 +8x + 16) - ( y 2 - 6y+ 9)
= ( x + 4 ) 2 - ( y - 3 ) 2 =(x-y + 7)(x + y + l).