Cmr nếu (a+5b) chia hết cho 7 với mọi a,b thuộc Z thì 10a+b cũng chia hết cho 7
CMR:nếu a+5b chia hết cho7 với a;b thuộc Z thì 10a+b cũng chia hết cho 7
Ta có :a+5b chia hết cho 7
\(\Rightarrow\)10* [a+5b] chia hết 7
Ta có 10*[a+5b]-[10a+b]
\(\Rightarrow\)10a+50b-10a-b
\(\Rightarrow\)49b
Vì 49 chia hết 7 nên 10a+b chia hết cho 7
Vậy ta có điều chứng minh
cmr nếu a,b thuộc N và a+5b chia hết cho 7 thì 10a+b chia hết cho 7
Chứng tỏ rằng nếu a + 5b chia hết cho 7 thì 10+b cũng chia hết cho 7, nếu 10a +b chia hết cho 7 thì
a+5b cũng chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Chứng minh rằng: Nếu a,b thuộc N và a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Xét hiệu 5(10a+b) - (a+5b) = (50a+5b) - (a+5b)
=49a chia hết cho 7
suy ra:5(10a+b) - (a+5b) chia hết cho 7
mà a+5b chia hết cho 7 nên 10a+b chia hết cho 7
Chứng tỏ với mọi a, b thuộc N ta có:
Nếu cho ( a+5b) chia hết cho 7 thì (10a+b) chia hết cho 7
Câu hỏi của NGUYỄN MINH ÁNH - Toán lớp 6 - Học toán với OnlineMath
CMR Nếu a +5b có thể chia hết cho 7 thì 10a + b có thể chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
cho a+5b chia hết cho 7 (a,b thuộc N).CMR:10a+b chia hết cho 7
\(49a+a+5b⋮7\)vì \(49a⋮7\)cộng với \(a+5b⋮7\)thì ta được \(49a+a+5b⋮7\)nha :)
\(a+5b⋮7\)
\(\Rightarrow49a+a+5b⋮7\)
\(\Rightarrow50a+5b⋮7\)
\(\Rightarrow5\left(10a+b\right)⋮7\)
Mà 5 không chia hết cho 7 => (10a+b) chia hết cho 7 (ĐPCM)
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^