cho tam giác ABC có BC = 10 cm, các đường trung tuyến BD và CE. CMR BD + CE > 15 cm
Cho tam giác ABC có các đường trung tuyến AM BD và CE biết AB = 8 cm AC= 10 cm và BC = 14 cm chứng minh rằng BD+CE>24cm
cho tam giác ABC có BC= 15 cm , các trung tuyến BD và CE . CMR BD+CE >22.5
GIẢI NHANH GIÚP MÌNH NHA
Cho tam giác ABC có BC = 34 cm, đường trung tuyến BD = 24 cm, đường trung tuyến CE = 45 cm. Gọi G là giao điểm của BD và CE. Tính độ dài các cạnh của tam giác GDE
G là giao điểm của 2 đường trung tuyến BD và CE
Suy ra : G là trọng tâm tam giác ABC
Suy ra :
GD = 1/3 BD = 1/3 x 24 = 8 ( cm )
GE = 1/3 CE = 1/3 x 45 = 15 ( cm )
Xét tam giác ABC có :
E là trung điểm AB ( trung tuyến CE )
D là trung điểm AC ( trung tuyến BD )
Suy ra : ED là đường trung bình của tam giác ABC
Suy ra ED : = 1/2 x BC = 1/2 x 34 = 17 ( cm )
Vậy GD = 8 cm
GE = 15 cm
ED = 17 cm
cho tam giác ABC . có BC=10 cm . đường trung tuyến BD và CE có đọ dài lần lượt là 9cm và 12cm . CMR BD_|_CE
gọi G là trọng tâm cuả tam giác ABC . ta có:
\(GC=\frac{2}{3}CE=\frac{2}{3}.12=8\left(cm\right)\)
\(GB=\frac{2}{3}BD=\frac{2}{3}.9=6\left(cm\right)\)
tam giác BGC có:
\(10^2=6^2+8^2\)
hay :\(BC^2=BG^2+CG^2\)
=> tam giác BGC vuông tại G
=> BD_|_CE (ĐPCM)
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
\(GC=\frac{2}{3}GE=\frac{2}{3}.12=8\left(cm\right)\)
\(GB=\frac{2}{3}BD=\frac{2}{3}.9=6\left(cm\right)\), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Cho tam giác ABC có BC = 8 cm, các đường trung tuyến BD, CE cắt nhau tại G. Chứng minh BD + CE > 12 cm.
tam giác ABC có BC = 10cm, các đường trug tuyến BD và CE . Chứng minh rằng BD+CE>15 cm
Cho tam giác ABC biết BC=10 cm
Vẽ trung tuyến BD và CE cắt nhau tại G
CMR: BD+CE>!5 cm
Giúp mk nha
cho tam giác ABC các đường trung tuyến BD,CE cho biết BC=10cm BD=9 cm CE=12 cm
chứng minh
â)BD vuông góc với CE
b)tính diện tích tam giác ABC
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
cho tam giác ABC có AB = 3 cm, AC = 4 cm, BC =5cm, kẻ đường trung tuyến AM. Qua. kẻ đường thẳng d vuông với AM, qua M kẻ các đường thẳng vuông góc với AB và AC chúng cắt đường thẳng d lần lượt tại D và E. CMR: a) BD// CE b) DE= BD+ CE