. Chứng minh rằng nếu a+b>=2 thì a^3+b^3<=a^4+b^4
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4
b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13
Câu b) tương tự nhé bạn.
1) Chứng minh rằng tích của 1 số chính phương và số tự nhiên đứng liền kề trước nó chia hết cho 12.
2) chứng minh rằng nếu a2 + b2 chia hết cho 3 thì a và b đồng thời chia hết cho 3.
3) chứng minh nếu a3 +b3 +c3 chia hết cho 9 thì ít nhất 1 trong 3 số a,b,c chia hết cho 3
1)chứng minh rằng nếu a+b+c=1 thì a^4 +c^4 +b^4 =abc
2) với a,b,c dương chứng minh rằng 2căna +2cănb+2cănc +a^2+b^2+c^2 >= 3(a+b+c)
Chứng minh rằng : nếu a+2/a-2 = b+3/b-3 thì a/2=b/3
Ai đấy giúp mình với mình cảm ơn
\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\Rightarrow\left(a+2\right)\left(b-3\right)=\left(b+3\right)\left(a-2\right)\Rightarrow ab+2b-3a-6=ab+3a-2b-6.\)
\(\Rightarrow6a=4b\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\)đpcm
Chứng minh rằng: nếu a>=3;b>=3; a^2+b^2>=25 thì a+b>=7
Ta có:
\(a^2+b^2\ge25\)
\(\Leftrightarrow a^2+b^2+2\left(a-3\right)\left(b-3\right)-25\ge2\left(a-3\right)\left(b-3\right)\ge0\)
\(\Leftrightarrow\left(a+b-7\right)\left(a+b+1\right)\ge0\)
\(\Leftrightarrow a+b\ge7\)
chứng minh rằng nếu a , b thuộc N và a^2 + b^2 chia hết cho 3 thì a; b chia hết cho 3
Vì số chính phương chia 3 dư 1 hoặc 0 (tự c/m)
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0); (0;1); (1;0) hoặc (1;1)
Vì a2 + b2 chia hết 3 nên ta nhận cặp (0;0)
=> a,b đều chia hết 3 (đpcm)
bài 1 Chứng minh rằng
Nếu a,b,c lớn hơn hoặc bằng 0 thì a3+b3+c3 lớn hơn hoặc bằng 3abc
bài 2 chứng minh rằng
Nếu a2+b2+c2=ab+ac+bc thì a=b=c
ai lam dc bai nay k giup minh voi
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c