Tìm x, y thuộc N* biết x=1!+2!+3!+...+y!
X^2= 1! + 2! + 3! +....+ Y! tìm x;y biết x;y thuộc N*
Với \(y\ge5\):
\(VP=1!+2!+3!+...+y!\)
có \(k!=1.2.3.4.5.....k\)có chữ số tận cùng là \(0\)với \(k\ge5\).
Do đó \(VP\)có chữ số tận cùng là chữ số tận cùng của \(1!+2!+3!+4!=33\)
nên có chữ số tận cùng là \(3\).
Mà số chính phương không thể có chữ số tận cùng là \(3\)do đó phương trình vô nghiệm với \(y\ge5\).
Thử trực tiếp từng trường hợp \(1\le y\le4\)ta được các nghiệm là \(\left(1,1\right),\left(3,3\right)\).
tìm x,y thuộc n biết 2^x-1 x 3^y+1=12^x+y
Tìm x , y thuộc N biết :
2 x + 1 . 3 y = 12 x
\(2^{x+1}.3^y=12^x\)
\(2.2^x.3^y=2^{2x}.3^x\)
\(2.3^y=2^2.3^x\)
\(3^{y-x}=2\)
=> phương trình vô nghiệm
1. tìm các số nguyên x và y biết (2x+1).(y-4)=12
2. Tìm n thuộc Z biết (n-7) chia hết cho (n+1)
3. tìm x thuộc Z biết /x+3\+2<4
MONG CÁC BẠN GIÚP MÌNH GIẢI HẾT
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
1. Tìm x,y thuộc N
xy + x + y = 17
2. Tìm n thuộc N để các biểu thức là số nguyên tố
a, P = (n - 3 ) . ( n + 3 )
b, Q = n^2 + 12n
c, K = 3^n + 18
d, M = ( n - 2 ) . ( 3n + 5 )
3. Tìm các số nguyên tố x,y
a, x^2 + 45= y
b, 2^ x = y+y+1
4. Tìm x thuộc N biết
a, x+17: x+3
Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:
x + 1 | 1 | 2 | 3 | 6 | 9 | 18 |
y + 1 | 18 | 9 | 6 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 5 | 8 | 17 |
y | 17 | 8 | 5 | 2 | 1 | 0 |
tìm x,y thuộc N biết: x^2=1!+2!+3!+...+y!
Tìm x,y thuộc N biết
1, x/2-2/y=1/2
2, 5/x-y/3=1/6
3, x/y-1/(y+1)=1/2
a)\(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\)
=> \(\frac{2}{y}=\frac{x}{2}-\frac{1}{2}\)
=> \(\frac{2}{y}=\frac{x-1}{2}\)
=> \(y\left(x-1\right)=4\)
Vì x,y \(\inℕ\)nên x - 1 \(\inℕ\)=> y và x - 1 thuộc Ư(4)
Ta có : Ư(4) = {1;2;4}
Lập bảng :
y | 1 | 2 | 4 |
x - 1 | 4 | 2 | 1 |
x | 5 | 3 | 2 |
Vậy \(\left(x,y\right)\in\left\{\left(5,1\right);\left(3,2\right);\left(2,4\right)\right\}\)
b) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
=> \(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
=> \(\frac{5}{x}=\frac{1+2y}{6}\)
=> \(x\left(1+2y\right)=30\)
Vì x,y thuộc N nên 1 + 2y thuộc N => x và 1 + 2y thuộc Ư(30)
Ta có : Ư(30) = {1;2;3;5;6;10;15;30}
Lập bảng :
x | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
1 + 2y | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
2y | 29 | 14 | 9 | 5 | 4 | 2 | 1 | 0 |
y | loại | 7 | loại | loại | 2 | 1 | loại | 0 |
Vậy : \(\left(x,y\right)\in\left\{\left(2,7\right);\left(6,2\right);\left(30,0\right)\right\}\)
c) Làm nốt
tìm x, y thuộc N biết (x^2+1)(x+1)=3^y
Tìm x,y thuộc n biết:
1)(x+1).(y+3)=6
2).:1+2+3+...+x=55?
1) Vì (x+1).(y+3)=6
Mà 6=2.3=1.6
=> Nếu x+1=2 thì x=1; y=0
Nếu x+1=1 thì x=0;y=3
2) => (1+x).x:2=55
=> (1+x).x=55.2
=> (1+x).x=110
Vì 1+x và x là 2 số tự nhiên liên tiếp và 110=10.11
=> x=10