Tìm x biết:
\(\frac{x+2015}{13}\)+\(\frac{x+2015}{14}\)+\(\frac{x+2015}{15}\) = \(\frac{x+2015}{16}\)+\(\frac{x+2015}{17}\)
Tìm x biết:
\(\frac{x-25-124}{2015}+\frac{x-124-2015}{25}+\frac{x-2015-25}{124}=3\)
\(\dfrac{x-25-124}{2015}\) + \(\dfrac{x-124-2015}{25}\) + \(\dfrac{x-2015-25}{124}\) = 3
\(\dfrac{x-15-124}{2015}\) - 1 + \(\dfrac{x-124-2015}{25}\) - 1 + \(\dfrac{x-2015-25}{124}\) - 1 = 0
\(\dfrac{x-15-124-2015}{2015}\)+\(\dfrac{x-124-2015-25}{25}\)+\(\dfrac{x-2015-25-124}{124}\) = 0
\(\dfrac{x-\left(15+124+2015\right)}{2015}\)+\(\dfrac{x-\left(124+2015+25\right)}{25}\)+\(\dfrac{x-\left(2015+25+124\right)}{124}\) = 0
(\(x\) - 2164).(\(\dfrac{1}{2015}\)+\(\dfrac{1}{25}\)+\(\dfrac{1}{124}\)) = 0
\(x-2164\) = 0
\(x\) = 2164
\(\frac{x+2016}{15}+\frac{x+2015}{14}=\frac{x+2014}{13}+\frac{x+2013}{12}\)
Trừ mỗi số hãng của 2 vế với 1 ta được nhân tử chung là \(x+2001\)
Bài 1 : tìm x , biết :
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow\frac{x-4}{2015}-\frac{10-2x}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{x-4-\left(10-2x\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{\left(x+2x\right)-\left(4+10\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{3x-14}{2015}=\frac{1}{2015}\)
\(\Rightarrow\left(3x-14\right).2015=2015\)
\(\Rightarrow3x-14=1\) ( bớt cả 2 vế đi 2015 lần )
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
Cho biết \(\frac{x+2015}{x-2015}=\frac{y+2017}{y-2017}\) (x khác 2015 và -2015: y khác 2017 và -2017)
Tìm \(\frac{x}{y}\)
\(\frac{x+2015}{x-2015}=\frac{y+2017}{y-2017}\)
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)-\left(x-2015\right)}{\left(y+2017\right)-\left(y-2017\right)}=\frac{2015}{2017}\)( 1 )
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)+\left(x-2015\right)}{\left(y+2017\right)+\left(y-2017\right)}=\frac{x}{y}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{y}=\frac{2015}{2017}\)
Tìm x biết:
\(\frac{x+2014}{2015}+\frac{x+2015}{2016}=\frac{x+2016}{2017}+\frac{x+2017}{2018}\)
trừ mỗi vế cho 2 rồi tách -2 thành -1và -1
\(\frac{x+2014}{2015}+\frac{x+2015}{2016}=\frac{x+2016}{2017}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\)\(\frac{x+2014}{2015}-1+\frac{x+2015}{2016}-1=\frac{x+2016}{2017}-1+\frac{x+2017}{2018}-1\)
\(\Leftrightarrow\)\(\frac{x-1}{2015}+\frac{x-1}{2016}=\frac{x-1}{2017}+\frac{x-1}{2018}\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow\)\(x-1=0\) ( do 1/2015 + 1/2016 - 1/2017 - 1/2018 # 0 )
\(\Leftrightarrow\) \(x=1\)
Tìm x biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4029}{2014}+\frac{4030}{2015}\)
Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4030}{2015}\).
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=2015.\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\)
=> x = 2015
Tìm x biết \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4030}{2015}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x+2015=\frac{2016}{1}+\frac{2017}{2}+\frac{2018}{3}+...+\frac{4030}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}=2015.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)\(\Rightarrow x=2015\)
tìm x biết \(\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2015}\right)\times x+2015=\frac{2016}{1}+\frac{2017}{2}+.....+\frac{4029}{2014}+\frac{4030}{2015}\)