chứng tỏ rằng:
aaa chia hết cho3
ab.(a+b) chia hết cho 2 (a:b thuoc N)
Nếu trong a,b có 1 số chẵn
=> Bài toán được chứng minh
Nếu a,b đều là số lẻ
a + b là số chẵn
=> Bài toán được chứng minh
=> Điều phải chứng minh
Giả sử a = 1
111 không chia hết cho 33
Vậy đề bạn chưa đúng
vì aaa = a x 3 nên a x 3 cũng chia hết cho 3
Vậy aaa chia hết cho 3
bài 12 : cho n là số tự nhiên . chứng minh rằng
a) (n+2013)(n+2014) chia hết cho 2
b)n(n+1)(n+2) chia hết cho và chia hết cho3
c)n(n+1)(2n+1) chia hế cho 2 và cho 3
Chứng tỏ rằng: 66a+39b chia hết cho3 với mọi a,b thuộc N ?
1.Tìm n \(\in\) N, biết:
a) 3n-1 chia hết cho 3-2n
b) 3n+1 chia hết cho 11-2n
2. a) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 2
b) Chứng tỏ rằng tích 3 số tự nhiên liên tiếp chia hết cho 6
c) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 8
chứng minh n(n+1)(2n+1) chia hết cho3
Cho A =2+22+23+.....+22020+22021+22022
CHỨNG TỎ rằng A chia hết cho3
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
A=(2+22)+(23+24)+(25+26)+.......+(22019+22020)+(22021+22022)
A=2.(1+2)+23.(1+2)+25.(1+2)+.......+22019.(1+2)+22021.(1+2)
A=2.3+23.3+25.3+.......+22019.3+22021.3
A=3.(2+23+25+........+22019+22021)
Vì 3⋮3⇒A⋮3
chứng tỏ rằng n+2 chia hết cho 2n+1
chứng tỏ rằng ( 6^2n + 19^n - 2^n+1) chia hết cho 17
Bài 1: Cho a = 102004 + 2005:
A) a chia hết cho 2
B) a chia hết cho 3
C) a chia hết cho 5
D) a chia hết cho 9
Bài 2: Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+1)(n+3) luôn chia hết cho3. ((((( Các bạn nhớ giải thích bài này nha))))))))
:( Giúp mình với. Ai nhanh thì mk cho 2 tk!!!