Cho tam giác ABC . 3 đường trung tuyến AD; BE;CF. Từ F kẻ dường thẳng song song với AD cắt ED kéo dài tại I.
A,CM: IC//BF
B,so sánh các cạnh của tam giác ICF với với trung tuyến tam giác ABC
cho tam giác abc vuông tại a có ad là đường trung tuyến tam giác abc. cmr d là giao điieemr 3 đường trung trực của tam giác abc
Cho tam giác ABC và 3 đường trung tuyến AD BE và CF. Từ F kẻ đường thẳng song song vs AD cắt ED tại I.
aCMR khi AD vuông góc BE thì tam giác ICF là tam giác vuông
b So sánh các cạnh của tam giác ICF với cá trung tuyến của tam giác ABC
Bài 1 :Cho tam giác ABC có hai đường trung tuyến BE và CF cắt nhau tại G.Chứng minh G là trọng tâm của tam giác ABC.(Gợi ý trọng tâm là điểm chung của ba đường trung tuyến nên trọng tâm là điểm chung của...)
Bài 2 Cho tam giác ABC có đường trung tuyến AD và trọng tâm G.Đã biết GA=2/3 AD,hãy chứng minh GA=2GD,AD=3GD.
Cho tam giác ABC với đường trung tuyến AD. Trên tia AD lấy điểm E sao cho AD = DE, trên tia BC lấy điểm M sao cho BC = CM
a) Tìm trọng tâm của tam giác AEM
b) So sánh các cạnh của tam giác ABC với các đường trung tuyến của tam giác AEM
c) So sánh các đường trung tuyến của tam giác ABC với các cạnh của tam giác AEM
Giải
a) Do AD = DE nên MD là một đường trung tuyến của tam giác AEM. Hơn nữa do
CD=12CB=12CMCD=12CB=12CM
Nên C là trọng tâm của tam giá AEM.
b) Các đường thẳng AC, EC lần lượt cắt EM, AM tại F, I. Tam giác AEM có các đường trung tuyến là AF, EI, MD. Ta có ∆ADB = ∆EDG (c.g.c) nên AB = EC
Vậy: AC=23AF;BC=CM=23MD;AB=EC=23EIAC=23AF;BC=CM=23MD;AB=EC=23EI
c) Trước tiên, theo giả thiết, ta có AD = DE nên AD=12AEAD=12AE
Gọi BP, CQ là các trung tuyến của ∆ABC.
∆BCP = ∆MCF => BP=FM=12EMBP=FM=12EM. Ta sẽ chứng minh CQ=12AMCQ=12AM
Ta có:
ΔABD=ΔECD⇒ˆBAD=ˆCED⇒AB//EC⇒ˆQAC=ˆICAΔABD=ΔECD⇒BAD^=CED^⇒AB//EC⇒QAC^=ICA^
Hai tam giác ACQ và CAI có cạnh AC chung, ˆQAC=ˆICAQAC^=ICA^;
AQ=12AB=12EC=ICAQ=12AB=12EC=IC nên chúng bằng nhau.
Vậy CQ=AI=12AMCQ=AI=12AM.
Tóm lại: AD=12AE,BP=12EM,CQ=12AM
Cho tam giác ABC với đường trung tuyến AD. Trên tia AD lấy điểm E sao cho AD = DE, trên tia BC lấy điểm M sao cho BC = CM. So sánh các cạnh của tam giác ABC với các đường trung tuyến của tam giác AEM
Các đường thẳng AC, EC lần lượt cắt EM, AM tại F, I. Tam giác AEM có các đường trung tuyến là AF, EI, MD. Ta có ΔADB = ΔEDC (c.g.c) nên AB = EC
Vậy: AC = 2/3 AF; BC = CM = 2/3 MD; AB = EC = 2/3 EI
Cho tam giác ABC với đường trung tuyến AD. Trên tia AD lấy điểm E sao cho AD = DE, trên tia BC lấy điểm M sao cho BC = CM. So sánh các đường trung tuyến của tam giác ABC với các cạnh của tam giác AEM.
Trước tiên, theo giả thiết, ta có AD = DE nên AD = 1/2 AE
Cho tam giác ABC với đường trung tuyến AD. Trên tia AD lấy điểm E sao cho AD = DE, trên tia BC lấy điểm M sao cho BC = CM.
a) Tìm trọng tâm tam giác AEM .
b) So sánh các cạnh của tam giác ABC với các đường trung tuyến của tam giác AEM.
c) So sánh các đường trung tuyến của tam giác ABC với các cạnh của tam giác AEM.
Tam giác ABC ; 3 đường trung tuyến AD,BE,CF . Từ F kẻ đường thẳng song song AD cắt ED tại D.
a, CM : IC // BE ; IC = BE.
b, Cho AD vuông góc với BE . CM : Tam giác ICF vuông và chu vi của tam giác ICF bằng tổng độ dài 3 đường trung tuyến của tam giác ABC.
Mk cần gấp .
cho tam giác ABC , 3 đường trung tuyến AD,BE,CF. Từ F kẻ đường thẳng song song với AD cắt ED tại I
a. CM:IC//BE
b,CM: nếuAD vuông góc với BE thì tam giác ICF là tam giác vuông
c:So sánh các cạnh của tam giác ICF với các trung tuyến tam giác ABC
gọi g là trọng tâm của tam giác abc vẽ điểm d sao cho g la trung điểm của ad cmr
các cạnh của tam giác bgd=2/3 các đường trung tuyến của abc
các đường trung tuyến của tam giác bgd = một nửa các cạnh của tam giác abc
Gọi AM, BN, CP là các đường trung tuyến của ∆ABC cắt nhau tại G.
AG = GD (gt)
AG = 2GM (suy ra từ tính chất đường trung tuyến)
Nên GD = 2GM
GD = GM + MD
=> GM = MD
Xét ∆BMD và ∆CMG:
BM = CM (gt)
\(\widehat{BND}=\widehat{CMG}\left(\text{đối đỉnh}\right)\)
MD = GM (chứng minh trên)
Do đó: ∆BMD = ∆CMG (c.g.c)
=> BD = CG
\(CG=\frac{2}{3}CP\left(\text{tính chất đường trung tuyến}\right)\)
\(\Rightarrow BD=\frac{2}{3}CP\) (1)
\(BG=\frac{2}{3}BN\left(\text{tính chất đường trung tuyến}\right)\) (2)
\(AG=\frac{2}{3}AM\left(\text{tính chất đường trung tuyến}\right)\)
\(\Rightarrow GD=\frac{2}{3}AM\) (3)
Từ (1), (2) và (3) suy ra các cạnh của \(\Delta BGD=\frac{2}{3}\) các đường trung tuyến của \(\Delta ABC\)
GM = MD (chứng minh trên)
Nên BM = MD là đường trung tuyến của ∆BGD
\(BM=\frac{1}{2}BC\) (4)
Kẻ đường trung tuyến GE và DF của ∆BGD
\(\Rightarrow FG=\frac{1}{2}BG\)
\(GN=\frac{1}{2}BG\left(\text{tính chất đường trung tuyến}\right)\)
Nên FN = GN
Xét ∆DFG và ∆ANG:
AG = GD (gt)
\(\widehat{DGF}=\widehat{AGN}\left(\text{đối đỉnh}\right)\)
GF = GN (chứng minh trên)
Do đó ∆DFG = ∆ANG (c.g.c)
=> DF = AN
\(AN=\frac{1}{2}AC\left(gt\right)\)
\(\Rightarrow DF=\frac{1}{2}AC\) (5)
BD = CG (chứng minh trên)
\(ED=\frac{1}{2}BD\left(\text{vì E là trung điểm BD}\right)\)
\(GP=\frac{1}{2}CG\left(\text{tính chất đường trung tuyến}\right)\)
=> ED = GP
∆BDM = ∆CGM (chứng minh trên)
\(\Rightarrow\widehat{BDM}=\widehat{CGM}\text{ hay }\widehat{CGM}\)
\(\widehat{CGM}=\widehat{PGA}\left(\text{đối đỉnh}\right)\)
\(\Rightarrow\widehat{EDG}=\widehat{PGA}\)
AG = GD (gt)
=> ∆PGA = ∆EDG (c.g.c)
=> GE = AP
\(\Rightarrow GE=\frac{1}{2}AB\)(6)
Từ (4),(5) và (6) suy ra các đường trung tuyến của ∆BGD bằng một nửa cạnh của ∆ABC.