tìm a,b là số tự nhiên (a>b>0) sao cho số ab -ba là số chính phương
Tìm số tự nhiên ab (a>b>0) sao cho ab - ba là số chính phương và ab chia hết cho 3
Tìm số tự nhiên AB với A < B sao cho AB - BA là 1 số chính phương ????????????????
Tìm số tự nhiên ab để
a, ab + ba là số chính phương
b, ab- ba là số chính phương (a > b )
Ta có:
ab-ba=10a+b-10b-a
=9a-9b=9(a-b)
Để 9(a-b) là số chính phương thì a-b=9
Vì a, b là các chữ số <10; mà a>b nên a chỉ có thể bằng 9 và b=0
Vậy a=9; b=0
Thử lại: 90-09=81=92
a. Ta có:
ab+ba=10a+b+10b+a=11a+11b=11(a+b)
=> Để 11(a+b) là số chính phương thì a+b=11
Mà 11=2+9=3+8=4+7=5+6
Ta có bảng:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
ab | 29 | 38 | 47 | 56 | 65 | 74 | 83 | 92 |
Tìm số tự nhiên ab sao cho ab- ba là các số chính phương ( a>b>0)
Chú ý : tất cả ab và ba đều có gạch ngang trên đầu nhá
Giải ra giúp mk nha
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm số tự nhiên ab (a, b khác 0) sao cho a khác b và ab2 - ba2 là số chính phương
Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath
CMR tổng sau không là số chính phương : A = abc + bca + cab tìm số nguyên tố ab ( a > b > 0 ) sao cho ab - ba là số chính phương
1)
A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b + c )
số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37
Vậy A không là số chính phương
2) ab - ba = ( 10a + b ) - ( 10b + a ) = 9a - 9b = 9 . ( a - b ) = 32 . ( a - b )
do ab - ba là số chính phương nên a - b là số chính phương
ta thấy 1 \(\le\)a - b \(\le\)8 nên a - b là số chính phương.ta thấy 1 \(\le\)a - b \(\le\)b nên a - b \(\in\){ 1 ; 4 }
với a - b = 1 thì ab \(\in\){ 21 ; 32 ; 43 ; 54 ; 65 ; 76 ; 87 ; 98 }
loại các hợp số 51 \(⋮\)3, 62 \(⋮\)2 ; 84 \(⋮\)2 ; 95 \(⋮\)5 còn 73 là số nguuyên tố,
Vậy ab bằng 43 hoặc 73. khi đó : 43 - 34 = 9 = 32
73 - 37 = 36 = 62
Bài 1: Cho A= 1....1(100 chữ số 1) , B= 2....2(50 chữ số 2) (A,B \(\in\)N )
Chứng minh A - B là số chính phương
Bài 2: Tìm số tự nhiên có 2 chữ số khác nhau dạng ab sao cho ba là số tự nhiên và ab - ba là số chính phương.
B1:
Ta có:A-B=111...111111-2 x 111...111111
(100 chữ số 1) (50 chữ số 2)
=1111...1111 x (1000...0001 - 2)
(50 chữ số 1) (có 51 chữ số trong đó có 49 chữ số 0)
=1111...1111 x 9999...9999
(50 chữ số 1) (50 chữ số 9)
=1111...1111 x 9 x 1111...1111
(50 chữ số 1) (50 chữ số 1)
=(1111...1111)^2 x 3^2
=(1111...1111 x 3)^2
Vậy hiệu A-B là một số chính phương
Tìm số nguyên tố ab (a>b>0) sao cho ab-ba là số chính phương ?
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤ 9 => 0<a-b ≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.