Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mikey
Xem chi tiết
Anh Yêu
Xem chi tiết
Trần Đức Tân
Xem chi tiết
Matrix
13 tháng 5 2015 lúc 21:06

1/2 + 1/3 < 1/2 + 1/2 = 1 
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1 
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1 
tương tự 
1/16 +1/17 + .. + 1/31 < 1 
1/32 + 1/33 + .. + 1/63 < 1 
=> cộng lại => B < 2

Tran Minh Khue
28 tháng 4 2017 lúc 11:15

co phai chung minh be hon 2 dau

Huỳnh Thanh Trúc
Xem chi tiết
Liêu Phong
Xem chi tiết
Lê Thành Tài
Xem chi tiết
vuquocmien76
Xem chi tiết
Lê thị Dung
Xem chi tiết
Mạnh Lê
6 tháng 4 2017 lúc 7:53

trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N* 
Thật vậy vì k thuộc N*nên ta có 
k+1=k+1=>1/(k+1)= 1/(k+1) 
k+2>k+1=>1/(k+2)<1/(k+1) 
k+3>k+1=>1/(k+3)< 1/(k+1) 
… 
k+n>k+1=>1/(k+n)< 1/(k+1) 
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)< 
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) ) 

=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n) 
<n/(k+1) 
………………………… 
Áp dụng bài toán trên ta có 
1=1 
1/2+1/3 
=1/(1+1)+1/(1+2) 
<2/(1+1)=2/2=1 
1/4+1/5+1/6+1/7 
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4) 
<4/(3+1)=4/4=1 
1 / 8 +1/9 ... +1/15 
=1/(7+1)+1/(7+2)+…+1/(7+8) 
<8/(7+1)=8/8=1 
1/16+1/17+..+1/31 
=1/(15+1)+1/(15+2)+….+1/(15+16) 
<16/(15+1)=16/16=1 
1/32+1/33+…+1/63 
=1/(31=1)+1/(32+1)+…+1/(31+32) 
< 32/(31+1)=32/32 = 1 
=>1/2 + 1/3+…+1/63<1+1+1+1+1+1 
=>1/2 + 1/3+…+1/63<6 \(\left(ĐPCM\right)\)

~~~ Chúc các bạn học giỏi ~~~

Trần Hoàng Lan
Xem chi tiết