Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đỗ Nguyên
Xem chi tiết
GV
16 tháng 11 2016 lúc 7:38

Bạn xem ở đây nhé.

Câu hỏi của Lê Nguyễn Bảo Trân - Toán lớp 6 - Học toán với OnlineMath

chaubaopham
Xem chi tiết
Long Vũ Duy
Xem chi tiết
T gaming Meowpeo
Xem chi tiết
ẩn người chơi
Xem chi tiết
Akai Haruma
30 tháng 11 2023 lúc 23:50

Lời giải:

Phản chứng. Giả sử 2 số đó không nguyên tố cùng nhau.
Gọi $d=ƯCLN(5a+2b, 7a+3b), d> 1$

$\Rightarrow 5a+2b\vdots d; 7a+3b\vdots d$

$\Rightarrow 5(7a+3b)-7(5a+2b)\vdots d$

$\Rightarrow b\vdots d$

Mà $5a+2b\vdots d$ nên $5a\vdots d$

Vì $(a,b)=1$ nên $(a,d)=1$

$\Rightarrow 5\vdots d$. Mà $d>1$ nên $d=5$

$5a+2b\vdots 5\Rightarrow 2b\vdots 5\Rightarrow b\vdots 5$

$$7a+3b\vdots 5; b\vdots 5\Rightarrow 7a\vdots 5\Rightarrow a\vdots 5$

$\Rightarrow a,b\vdots 5$ (vô lý)

Vậy điều giả sử là sai. Tức 2 số đó ntcn.

 

Phạm Trọng Tài
Xem chi tiết
Vương Thị Diễm Quỳnh
29 tháng 11 2015 lúc 10:01

gọi d là 1 ước nguyên tố của ab,a+b thế thì ab chia hết cho d và a+b cũng như thế

Vì ab chia hết cho d nên a hoặc b chia hết cho d﴾vì d là số nguyên tố﴿.

Giả sử a chia hết cho d mà a+b chia hết cho d nên b chia hết cho d

=> d là ước nguyên tố của a và b, trái với đề bài cho a và b nguyên tố cùng nhau hay ƯCLN﴾a,b﴿=1

Vậy ............... 

disneyprinceton
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
Buồn vì chưa có điểm sp
24 tháng 9 2021 lúc 8:47

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

Khách vãng lai đã xóa
Lê Minh Vũ
24 tháng 9 2021 lúc 9:24

Giả sử \(d\) là ước nguyên tố của \(ab\)\(a+b\).

\(\Rightarrow\) \(ab⋮d\)\(a+b⋮d\)

\(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)

Do vai trò của \(a\)\(b\) bình đẳng nên:

Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))

\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)

Do đó \(ab\)\(a+b\) không thể có ước nguyên tố chung.

\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)

Vậy \(ƯCLN\left(ab,a+b\right)=1\)

Khách vãng lai đã xóa
phan van khai
Xem chi tiết
Sherry
23 tháng 11 2015 lúc 19:59

bạn giả sử 2 số đó ko nguyên tố cùng nhau thì có ước chung nguyên tố là d(d là số tự nhiên khác 0 và >1).

ta có:ab chia hết cho d =>a hoặc b chia hết cho b.

       và a chia hết cho d

thử từng trường hợp ra là xong!