B=-2/3+4/3.5+4/5.7+4/7.9+.......+4/97.99+101/99
-2/3+4/3.5+4/5.7+4/7.9+....+4/97.99+101/99
4/3.5 + 4/5.7 + 4/7.9 + ... + 4 /97.99 = ?
\(\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+...+\frac{4}{97\cdot99}\)
\(=\frac{2\cdot2}{3\cdot5}+\frac{2\cdot2}{5\cdot7}+\frac{2\cdot2}{7\cdot9}+...+\frac{2\cdot2}{97\cdot99}\)
\(=\frac{2}{3}+\frac{2}{5}-\frac{2}{5}+\frac{2}{7}-\frac{2}{7}+\frac{2}{9}-...+\frac{2}{97}-\frac{2}{99}\)
\(=\frac{2}{3}-\frac{2}{99}\)
\(=\frac{64}{99}\)
Tính giá trị biêut hức;B=2/1.3-4/3.5+6/5.7-8/7.9+...-96/95.97+98/97.99
các bạn cho mk hỏi câu này
2/3.5+2/5.7+2/7.9+...+2/97.99
thì mk sẽ viết thành
1/3.5+1/5.7+1/7.9+...+1/97.99
hay
2.(1/3.5+1/5.7+1/7.9+...+1/97.99)
giúp mk với
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99
Tính:
a) M=2/3.5+2/5.7+2/7.9+...+2/97.99
b) N=3/5.7+3/7.9+3/9.11+...+3/197.199
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
Cho A = 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9 +.....+ 2/97.99 và B = 1^2 / 1.2 x 2^2/2.3 x 3^2 / 3.4 x 4^2 /4.5 x .... x 98^2 / 98.99. Chứng tỏ A = 98B
Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)
Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)
=> A = 98B
các bạn có về sweet home
1.Tính hợp lí
a/ 2/3.5 + 2/5.7 + 2/7.9 +...+2/97.99
b/ 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
c/1/18 + 1/54 + 1/108 +...+1/990
2.Chứng minh rằng: 1/14 + 1/42 + 1/43 +...+1/79 + 1/80 > 7.12
Bài 1:
a: \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\)
\(=\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\)
\(=\frac13-\frac{1}{99}=\frac{32}{99}\)
b: \(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\cdots+\frac{1}{97\cdot99}\)
\(=\frac12\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\right)\)
\(=\frac12\left(\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac12\left(\frac13-\frac{1}{99}\right)=\frac12\cdot\frac{32}{99}=\frac{16}{99}\)
c: \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+\cdots+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+\cdots+\frac{1}{30\cdot33}\)
\(=\frac13\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\cdots+\frac{3}{30\cdot33}\right)\)
\(=\frac13\left(\frac13-\frac16+\frac16-\frac19+\cdots+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac13\left(\frac13-\frac{1}{33}\right)=\frac13\cdot\frac{10}{33}=\frac{10}{99}\)
Bài 2:
Sửa đề: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac{7}{12}\)
Đặt \(A=\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}\)
Ta có: \(\frac{1}{41}>\frac{1}{60}\)
\(\frac{1}{42}>\frac{1}{60}\)
...
\(\frac{1}{59}>\frac{1}{60}\)
\(\frac{1}{60}=\frac{1}{60}\)
DO đó: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\cdots+\frac{1}{60}+\frac{1}{60}=\frac{20}{60}=\frac13\) (1)
Ta có: \(\frac{1}{61}>\frac{1}{80}\)
\(\frac{1}{62}>\frac{1}{80}\)
...
\(\frac{1}{79}>\frac{1}{80}\)
\(\frac{1}{80}=\frac{1}{80}\)
Do đó: \(\frac{1}{61}+\frac{1}{62}+\cdots+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+\cdots+\frac{1}{80}=\frac{20}{80}=\frac14\) (2)
Từ (1),(2) suy ra \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac13+\frac14\)
=>\(A>\frac13+\frac14\)
=>A>7/12
Tìm x, biết: 1/3 + 1/3.5 + 1/5.7 + 1/7.9 +...+ 1/(x+2).(x+4)=50/101
<=> 2/1.3 + 2/3.5 + 2/5.7 +....+ 2/(x+2)(x+4) = 100/101
<=> 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +.....+ 1/x+2 - 1/x+4 = 100/101
<=> 1 - 1/x+4 = 100/101
<=> 1/x+4 = 1 - 100/101 <=> 1/x+4 = 1/101 <=> x+4 = 101 <=> x= 101 - 4 = 97
:)
Chứng tỏ rằng : B = 2/3.5+2/5.7+2/7.9+...+2/97.99
A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/95 - 1/97 + 1/97 - 1/99
A = 1/3 - 1/99
A = 32/99
BẠN TICK CHO MÌNH NHA !
\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(=2.(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99})\)
\(=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99})\)
\(=2.(\dfrac{1}{3}-\dfrac{1}{99})\)
\(=2.\dfrac{1}{297}\)
=\(\dfrac{2}{297}\)