tìm số nguyên dương n để n mũ 5 cộng 1 chia hết cho n mũ 3 cộng 1
cmr với n là số tn thì
a)2 nhân n mũ 3 +n chia hết cho 3.
b)n nhân (5n cộng 3) nhân (2n mũ 2 cộng 1) chia hết cho 6.
c) cho số tn a,b,c. chứng minh rằng a mũ 3 cộng b mũ 3 cộng c mũ 3 chia hết cho 6 thì a cộng b cộng c chia hết cho 6 và ngược lại, nếu a +b+c chia hết cho 6 thì a mũ 3 +b mũ 3+c mũ 3 cũng chia hết cho 6
Tìm các số nguyên dương n sao cho 3 mũ n cộng 4 mũ n cộng 2018 mũ n là số chính phương
* Tìm số nguyên n, sao cho :
a) 2n + 1 chia hết cho n - 5
b) n mũ 2 + 3n - 13 chia hết cho n + 3
c) n mũ 2 + 3 chia hết cho n - 1
* Tìm số nguyên dương n sao cho n + 2 của 111 còn n - 2 là bội của 11
* Tìm n thuộc Z để : n - 1 là bội của n + 5 và n + 5 là bội của n - 1
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
Tìm số tự nhiên n biết n mũ 2 cộng n cộng 4 chia hết cho n trừ 1
n2 + n + 4 chia hết cho n - 1
n2 - n + 2n + 4 chia hết cho n - 1
n.(n - 1) + 2n + 4 chia hết cho n - 1
2n + 4 chia hết cho n - 1
2n - 2 + 6 chia hết cho n - 1
2.(n - 1) + 6 chia hết cho n - 1
=> 6 chia hết cho n - 1
=> n - 1 thuộc Ư(6) = {1 ; 2 ; 3 ; 6}
Ta có bảng sau :
n - 1 | 1 | 2 | 3 | 6 |
n | 2 | 3 | 4 | 7 |
n^2 + n + 4 chia hết cho n-1
=> n^2-n+2n-2+6 chia hết cho n-1
=> n(n-1) + 2(n-1) + 6 chia hết cho n-1
Mà n(n-1) + 2(n-1) chia hết cho n-1
Nên 6 chia hết cho n-1
Suy ra n-1 thuộc Ư(6)
Có Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n-1 thuộc {1;-1;2;-2;3;-3;6;-6}
=> n thuộc {2;0;3;-1;4;-2;7;-5}
n2+n+4=n(n+1)+4 chia hết cho n-1
Khi đó:n+4 chia hết cho n-1(giảm biểu thức vì n-1 chia hết cho n+1 trong trường hợp này
mà n chia hết cho n nên ta rút gọn biểu thức là 4 chia hết cho 1.
Suy ra các số từ 1 đến 4 là n.
tk mình nha
Bài 1: tìm x, biết:
a) {x-[25-(9 mũ 2 -16.5) mũ 30 .24 mũ 3]-14}=1
b) (x+1)+(x+2)+....+(x+100)=7450
Bài 2: tính tổng
S=3+6+...+2016
Bài 3: a) Chứng tỏ 7 mũ n cộng 4( số 4 là số mũ)-7 mux n chia hết cho 30, với n thuộc N
b) 3 mũ n cộng 2( 2 là số mũ) +3 mũ n chia hết cho 10 với n thuộc N
Bài 1:
a){x-[25-(92-16.5)30.243]-14}=1
=>{x-[25-1.243]-14}=1
=>x-(-13799)-14=1
=>x-(-13813)=1
=>x=1+(-13813)
=>x=-13812
b) (x+1)+(x+2)+....+(x+100)=7450
=>100x+(1+2+...+100)=7450
=>100x+5050=7450
=>x=(7450-5050):100
=>x=24
Bài 2:
S=3+6+...+2016
S=(2016-3):3+1=672 ( số số hạng)
S=(2016+3)x672:2=678384
Bài 3 dài lắm mỏi tay lắm rùi
Tìm STN n,biết n thuộc N
a]2n cộng 1 chia hết cho n trừ 3
b]n mũ 2 cộng 3 chia hết cho n cộng 1
GIÚP MÌNH VỚI...=-=
1.Chứng minh nếu x mũ 4 trừ 4 nhân x mũ 3 cộng 5 nhân a nhân x mũ 2 trừ 4 nhân b nhân x cộng chia hết x mũ tru 3 cộng 3 nhân x mũ 2 trừ 9 nhân x trừ 3 thì a cộng b cộng c bằng 0
Bài 1: Tìm các số nguyên n để n + 4 chia hết cho n + 1
Bài 2 : Tìm các số nguyên x,y biết : x . ( y - 1 ) = -11
b. Cho tổng S = 1 - 3 + 3 mũ 2 - 3 mũ 3 + 3 mũ 4 - 3 mũ 5 + 3 mũ 6 - 3 mũ 7 + ... + 3 mũ 96 - 3 mũ 97 + 3 mũ 98 - 3 mũ 99
c. Chúng minh rằng S là bội của -20
b1
ta có : n+4 = (n+1)+3
=>n+1+3 chia hết cho n+1
vì n+1 chia hết cho n+1
=>3 chia hết cho n+1
=> n+1 chia hết cho 3
=> n+1 thuộc Ư 3 =[1;3]
=> n+1=1 n+1=3
n =1-1 n =3-1
n =0 n =2
vậy n thuộc [0;2]
cho n thuộc N , chứng minh rằng n mũ 2 cộng n cộng 1 không chia hết cho 4,không chia hết cho 5
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4