So sánh : 2015^2016 và 2016^2015
1) So sánh 20162015 và 20152016
2) So sánh 22014 và 5891
3) So sánh (20152016+20162016)2015 và (20152015+20162015)2016
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
so sánh P và Q biết : P= 2014/2015 + 2015/2016 + 2016/2017 và Q = 2014 + 2015 +2016/ 2015 +2016 + 2017
so sánh : (20^2015+11^2015)^2016 và (20^2016+11^2016)^2015
SO SÁNH
[20152015+20162015 ]2016và[20152016+20162016]2015
Giups tớ
so sánh:2014+2015/2015+2016 và 2014/2015+2015/2016
so sánh 2014/2015 và 2015+2015/2016 với 2014+2015/2015+2016
So sánh A và B :
A = 2015 . 2016 + 2017 / 2015 . 2016 + 2016
B = 2015 . 2016 + 2018 / 2015 . 2016 + 2017
Đặt 2015.2016+2016=n
suy ra A=(n+1)/n và B=(n+2)/(n+1)
Ta có A - B=(n+1)/n -(n+2)/(n+1)=((n+1)2-n(n+2))/n(n+1)=(n2+2n+1-n2-2n)/n(n+1)=1/n(n+1)
Vì A-B lớn hơn 0 nên A>B
So sánh
A=(20162015+20152015)2016 và B=(20162016+20152016)2015
so sánh :A=2015/2016+2016/2017 và B=2015+2016/2016+2017
Bạn Linh lẽ ra phải chứng minh như vầy đã chứ A=2015/2016 + 2016/2017=( 1 - 1/2016) + ( 1 - 1/2017)= 2 - 1/2016 - 1/2017 > 1
SO SÁNH:
2015/2016+2016/2017 và 2015+2016/2016+2017