cho M=1/5+1/13+1/14+1/15+1/61+1/62+1/63. Hãy so sánh M với 1/2
CHO S = 1/5 + 1/13 +1/14 +1/15 +1/61 +1/62 +1/63. HÃY SO SÁNH S VÀ 1/2
GIÚP MIH`, MIH` TICK NHA
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
suy ra S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2
S=\(\frac{1}{5}\)+(\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\)) + (\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\))
=> S< \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)
S<\(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}\)
=> S< \(\frac{1}{2}\)
Vậy S<\(\frac{1}{2}\)
so sánh A=1/5 +1/13+1/14+1/15+1/61+1/62+1/63 va F = 1004/2006
so sánh D với 1 phần 2:
D=\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
Ta có :
\(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{1}{20}\)
\(\Rightarrow D=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy \(D< \frac{1}{2}\)
\(D=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Nhận xét: \(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow D< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy D < 1/2
Cho:
E=1/5+1/13+1/14+1/15+1/61+1/62+1/63
F=1004/2006
So sánh E&F !
Chứng tỏ rằng : M < 1/2 biết :
M= 1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 .
So sánh A và B. A=1/50+1/51+1/52+...+1/98+1/99
và B= 1/5+1/13+1/14+1/15+1/61?1/62+1/63.
CMR: 1/5 + 1/13 +1/14 +1/15 +1/61 +1/62 + 1/63 < 1/2
chứng minh rằng s=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
CM: 1/5+1/13+1/14+1/15+1/16+1/61+1/62+1/63<1/2
gọi đó là A đi.
Ta có:
1/13+1/14+1/14< 1/12+1/12+1/12=3/12=1/4
1/61+1/62+1/63< 1/60+1/60+1/60=3/60=1/20
=> 1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20=1/2
=>A< 1/2 (ĐPCM)