Tìm n thuộc N để n +15 và n-75 là số chính phương
TÌM n thuộc N để 2n+15 là số chính phương
Tìm n thuộc số nguyên để n mũ 2 + 15 là số chính phương
giúp câu này với ạ
1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
Tìm n thuộc N để \(2^n+15\) là số chính phương
Xét các trường hợp :
- Với n $\ge$≥ 2 thì 2n chia hết cho 4 => 2n + 15 = 2n + 4 . 3 + 3 chia 4 dư 3 (sai vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) , loại
- Với n =1 => 2n + 15= 17, loại
- Với n = 0 => 2n + 15=16 , chọn
Vậy n = 0 là thỏa mãn điều kiện để 2n + 15 là số chính phương.
tìm n thuộc Z để n+1955 và n+2014 là số chính phương
\(n+1995=a^2,n+2014=b^2\)
Trừ vế theo vế ta được:
\(b^2-a^2=59\)
\(\Leftrightarrow\left(b-a\right)\left(b+a\right)=59\)
Do \(59\)là số nguyên tố và \(b>a\)nên ta chỉ có một trường hợp:
\(\hept{\begin{cases}b-a=1\\b+a=59\end{cases}}\Leftrightarrow\hept{\begin{cases}b=30\\a=29\end{cases}}\)
Khi đó \(n=-1114\).
Tìm n thuộc N để :
a;2^n + 1 là số chính phương
b;3^6 + 3^n là số chính phương
c; n^2 + 2002 là số chính phương
d; n + 1945 và n + 2004 là số chính phương
Tìm n thuộc N để:
n+5 và n+30 đều là số chính phương
=> n+5 và n+30 là 2 số chình phương liền nhau:
Ta có: a2-b2= 25
=> (a-b)(a+b)=25 ; giả sử a=b+1 ( 2 số liên tiếp) thì:
=>(b+1-b)(b+1+b )=25
=>2b=24 => b=12; => a=13
=> a2=169; b2=144
=>n= 144-5=169-30=139;
CHÚC BẠN HỌC TỐT..........
Với n+5 và n+30 là số chính phương
\(\left\{{}\begin{matrix}n+5=a^2\\n+30=b^2\end{matrix}\right.\) \(\Rightarrow n+5-n-30=a^2-b^2=\left(a-b\right)\left(a+b\right)=-25\)
Mà -25=-5.5=-1.25=-25.1
Giờ bn lập bảng các gt của a và b là đc
tìm n thuộc N để các số sau là số chính phương
a, (23-n)(n-3)
b, 2^n + 15
Tìm n thuộc N sao cho 2^n+15 là số chính phương
https://olm.vn/hoi-dap/question/99410.html
Đây là link trang có đáp án. Bạn vào xem cho nhanh nhé