cho A= 4n+1/ 2n+3 ( n thuộc Z)
a) tìm n thuộc Z để A thuộc 2
b) Tìm A để A đạt GTNN và GTLN
cho A= 4n+1/ 2n+3 ( n thuộc Z)
a) tìm n thuộc Z để A thuộc 2
b) Tìm A để A đạt GTNN và GTLN
Cho \(A=\frac{n+1}{n-2}\)
a, Tìm n thuộc Z để A thuộc Z
b, Tìm n thuộc Z để A đạt GTLN
c, Tìm n thuộc Z để A đạt GTNN
a)
Để A thuộc Z thì ( dấu " : " là chia hết cho )
n + 1 : n - 2
n - 2 + 3 : n - 2
=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Sau đó tìm n là xong
b) Cũng gần tương tự như phần a !
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất
mà n nguyên ( theo đề bài )
=> 3 : n - 3
Ta có bảng :
n - 3 | 1 | -1 | 3 | -3 |
n | 4 | 2 | 6 | 0 |
Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0
a) \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để \(A\in Z\Leftrightarrow3⋮\left(n-2\right)\)
\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Nêu n-2=1 thì n=3
Nếu n-2=-1 thì n=1
Nếu n-2=3 thì n=5
Nếu n-2=-3 thì n = -1
Vậy....
b) Để A đạt GTLN thì \(\frac{3}{x-2}\) đạt giá trị dương lớn nhất
=> x - 2 đạt giá trị dương nhỏ nhất
=> x - 2 = 1 => x = 3
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
Cho A = 4n+1/2n+3. Tìm n thuộc Z để A đạt GTNN
Giúp mình nhanh nhé. Đây là BTVN của mình. Các bạn giải chi tiết nhé.
Cho phân số B= 4n+1/2n-3, ( n thuộc Z)
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTLN
Bg
a) Ta có: B = \(\frac{4n+1}{2n-3}\) (n thuộc Z)
Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)
=> 4n + 1 ⋮ 2n - 3
=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3
=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3
=> 4n + 1 - (4n - 6) chia hết cho 2n - 3
=> 4n + 1 - 4n + 6 chia hết cho 2n - 3
=> 4n - 4n + 1 + 6 chia hết cho 2n - 3
=> 7 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
Ư(7) = {1; 7; -1; -7}
Lập bảng:
2n - 3 = | 1 | 7 | -1 | -7 |
n = | 2 | 5 | 1 | -2 |
(loại vì không phải scp) | (loại) | (loại) |
Vậy n = {2; -2} thì B là số chính phương
b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3 (ta chỉ cần loại những số n trong bảng)
=> n không thuộc {2; 5; 1; -2}
c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0
=> 2n - 3 = 1
=> 2n = 1 + 3
=> 2n = 4
=> n = 4 : 2
=> n = 2
Vậy n = 2 thì B đạt GTLN
b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d
=> 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d
=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)
c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).
Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.
2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm.
Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất.
=> 2n - 3 đặt giá trị dương nhỏ nhất .
Cho A= n+2/n-5 a) Tìm số nguyên n để A là phân số b) tìm n thuộc tập hợp Z để A đạt GTNN,GTLN nhanh nha cần gấp
Cho A = 4n+1/2n+3 tìm n ϵ Z để :
a) A có GTLN
b) A có GTNN