\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}=\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)
\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)
bạn ơi mình ko hiểu chỗ \(\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
thì là do
\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n+2}=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
:)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{200.202}\)
= \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{200+202}\)
= \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{200}-\frac{1}{202}\)
= \(\frac{1}{2}-\frac{1}{202}\)
= \(\frac{404}{202}-\frac{1}{202}\)
= \(\frac{403}{202}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{200.202}\)
\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{200.202}\right)\)
\(=\frac{1}{2}.\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2}{200.202}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}...+\frac{1}{200}-\frac{1}{202}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(=\frac{1}{2}.\frac{50}{101}\)
\(=\frac{25}{101}\)
Tính
F = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}.\frac{7^2}{6.8}.\frac{8^2}{7.9}\)
Đang cần gấp
Nhớ giải ra hết nhé
xin lỗi mình mới học lớp 5 thôi
tính các tổng sau
c=\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{48.50}\)
d=1-2+3-4+...+99-100+101
ai bít giải giúp mink với
\(=\left(1+3+5+...+99+101\right)-\left(2+4+6+...98+100\right)\)
Thấy từ 1 đến 100 có (101-1)/2+1=51
=> 1+3+5+....+99+100=(1+101)x50/2=2601
Từ 2 đến 100 có (102-2)/2+1=50
=> 2+4+...+98+100=(2+100)X50/2=2550
=> D=2601-2550=51
2/2*4 + 2/4*6 + 3/6*8 + ... + 2/38*50
= 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + .... + 1/38 - 1/50
= 1/2 - 1/50
= 24/50
= 12/25
Mk có cách khác câu d nè
\(D=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)+101\)
\(=-1-1-1-...-1+101\)(có 50 số -1)
\(=-1\times50+101\)
\(=51\)
chúc bn hok tốt
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
Đặt A= \(\frac{4}{2.4}\)+\(\frac{4}{4.6}\)+\(\frac{4}{6.8}\)+...+\(\frac{4}{2008.2010}\)
A= 2(\(\frac{2}{2.4}\)+\(\frac{2}{4.6}\)+\(\frac{2}{6.8}\)+...+\(\frac{2}{2008.2010}\))
A=2(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\))
A=2(\(\frac{1}{2}-\frac{1}{2010}\))
A=2.\(\frac{502}{1005}\)
A=\(\frac{1004}{1005}\)
Mình ko ghi lai đề nha
4/2.4/4+4/4.4/6+......+4/2008.4/2010=4/2.4/2010=4/1005
Mình ko bt đúng ko nữa nha
A x 2/4= 2/2x4 + 2/4x6 + 2/6x8 +............+ 2/2008x2010
A x 2/4=4-2/2x4 + 6-4/4x6 + 8-6/6x8 +.......+ 2010-2008/2008x2010
A x 2/4=4/2x4 - 2/2x4 + 6/4x6 - 4/4x6 +8/6x8 -6/6x8 +............+ 2010/2008x2010 - 2008/2008x2010
A x 2/4=1/2-1/2010
A x 2/4=502/1005
A= 502/1005 / 2/4
A=1004/1005
C=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{2008.2010}\)
\(C=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2010}\right)\) \(;C=\frac{1}{2}.\frac{502}{1005}=\frac{251}{1005}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
=\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{1004.1005}\)
=\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1004.1005}\right)\)
=\(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1004}-\frac{1}{1005}\right)\)
=\(2\left(1-\frac{1}{1005}\right)\)
=\(2.\frac{1004}{1005}\)
=\(\frac{2008}{1005}\)
P/s: Không biết đúng không nữa, làm đại ^.^
Ta thấy : \(\frac{4}{2.4}=\frac{1}{2}\left(\frac{4}{2}-\frac{4}{4}\right);\frac{4}{4.6}=\frac{1}{2}\left(\frac{4}{4}-\frac{4}{6}\right);...;\frac{4}{2008.2010}=\frac{1}{2}\left(\frac{4}{2008}-\frac{4}{2010}\right)\)
=> C =\(\frac{1}{2}.\left(\frac{4}{2}-\frac{4}{4}+\frac{4}{4}-\frac{4}{6}+\frac{4}{6}-\frac{4}{8}+...+\frac{4}{2008}-\frac{4}{2010}\right)\)
=> C = \(\frac{1}{2}\left(\frac{4}{2}-\frac{4}{2010}\right)=\frac{1}{2}\left(2-\frac{2}{1005}\right)=\frac{1}{2}\left(\frac{2010}{1005}-\frac{2}{1005}\right)\)
=> C = \(\frac{1}{2}\left(\frac{2010-2}{1005}\right)=\frac{1}{2}.\frac{2008}{1005}=\frac{1004}{1005}\)
tính :
S= \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)
\(2S=\frac{1}{2}-\frac{1}{10}\)
\(2S=\frac{2}{5}\)
\(S=\frac{2}{5}:2\)
\(S=\frac{1}{5}\)
S = \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
=> 2S = \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
=> S = \(\frac{2}{5}:2=\frac{2}{5}x\frac{1}{2}=\frac{1}{5}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(\Rightarrow2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
\(\Rightarrow2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
\(\Rightarrow2S=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow S=\frac{2}{5}:2=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)
\(F=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2014.2016}\)
F = 2.(2/2.4 + 2/4.6 +......+ 2/2014.2016)
F = 2.(1/2 - 1/4 + 1/4 - 1/6 +.......+1/2014 - 1/2016)
F = 2.(1/2 - 1/2016)
F = 2 . 1007/2016
F = 2014/2016
Ủng hộ nhé!
TÍNH NHANH
A=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{28.30}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\)
\(A=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{28}-\frac{1}{30}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(A=\frac{1}{2}.\frac{7}{15}\)
\(A=\frac{7}{30}\)
\(2.A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\)
\(2.A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{28}-\frac{1}{30}\)
\(2.A=\frac{1}{2}-\frac{1}{30}\)
\(2.A=\frac{7}{15}\)
\(A=\frac{7}{15}:2=\frac{7}{30}\)