Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàn Nguyễn Việt
Xem chi tiết
Aquarius
27 tháng 12 2017 lúc 20:18

10- 1 = 99 chia hết cho 99 rồi mà.

Mà n ở đâu vậy bạn?

Hoàn Nguyễn Việt
28 tháng 12 2017 lúc 12:30

nhầm nha CMR 10n - 1 chia hết cho 99 với n là số tự nhiên chẵn 

Yeuphu
Xem chi tiết
Nguyễn Châu Anh
2 tháng 1 2018 lúc 14:51

Ta có n là số tự nhiên nên n có 2 dạng : 2k hoặc 2k+1 (k\(\in\)N)

+Th1: n = 2k

\(\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)=2\left(2k+3\right)\left(k+3\right)⋮2\)

+Th2: n=2k+1

\(\left(n+3\right)\left(n+6\right)=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)⋮2\)

Vậy với\(\forall n\in N\)thì tích (n+3)(n+6) chia hết cho 2

tran thuy trang
Xem chi tiết
Lê Anh Tiến Dũng
Xem chi tiết
Phạm Thị Hồng Ngân
6 tháng 2 2017 lúc 21:44

Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4

        5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4

        5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4

suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4

Vậy 5^n - 1 chia hết cho 4 với n thuộc N

tk mk nha

Nguyễn Lê Hồng Ân
9 tháng 2 2017 lúc 11:03

5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1

=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4

Lê Anh Tiến Dũng
9 tháng 3 2017 lúc 20:08

mình nghĩ là nên dùng tình chất đồng dư

LÂM 29
Xem chi tiết
Dr.STONE
22 tháng 1 2022 lúc 16:45

- Chắc là gọi thầy Nguyễn Việt Lâm thôi :)

Nguyễn Việt Lâm
22 tháng 1 2022 lúc 17:08

1.

\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)

\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ

\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)

\(\Rightarrow n=4b\left(b+1\right)\)

Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn

\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)

Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1

Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2

\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1

\(\Rightarrow n⋮3\)

\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau

Nguyễn Việt Lâm
22 tháng 1 2022 lúc 17:13

2.

Lý luận tương tự bài 1, ta được n chẵn

Mặt khác các số chính phương chia 5 chỉ có các số dư 0, 1, 4

Mà: \(\left(2n+1\right)+\left(3n+1\right)=5n+2\) chia 5 dư 2

\(\Rightarrow2n+1\) và \(3n+1\) đều chia 5 dư 1

\(\Rightarrow2n⋮5\Rightarrow n⋮5\) (do 2 và 5 nguyên tố cùng nhau)

\(\Rightarrow n=5k\Rightarrow6n+5=5\left(6k+1\right)\)

- TH1: \(k=0\Rightarrow n=0\Rightarrow6n+5\) là SNT (thỏa mãn)

- TH2: \(k>0\Rightarrow6k+1>0\Rightarrow6n+5\) có 2 ước dương lớn hơn 1 \(\Rightarrow\) không là SNT (loại)

Vậy \(n=0\) là giá trị duy nhất thỏa mãn yêu cầu

Skeleton BoyVN
Xem chi tiết
ঔђưภทɕ°•๖ۣۜ ♒
29 tháng 11 2019 lúc 20:20

2n+5chia hết cho 2n+1

=>4n+10chia hết cho 4n+2

=>2n+5chia hết cho 2n+1

Khách vãng lai đã xóa
Edogawa Conan
29 tháng 11 2019 lúc 20:21

Ta có: 2n + 5 = (2n - 1) + 6

Do 2n - 1 \(⋮\)2n - 1 => 6 \(⋮\)2n - 1

=> 2n - 1 \(\in\)Ư(6) = {1; 2; 3; 6}

=> 2n \(\in\){2; 3; 4; 7}

Do n \(\in\)N=> n \(\in\){1; 2}

Khách vãng lai đã xóa
Skeleton BoyVN
29 tháng 11 2019 lúc 20:24

Mình k cho bạn Edogawa Cona rùi nhé.Thanks

Khách vãng lai đã xóa
Phạm Quang Huy
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Đặng công quý
10 tháng 11 2017 lúc 9:12

với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia

câu a)  2n +5 = 2n -1 +6

vì 2n -1 chia hết cho 2n -1  nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1

suy ra 2n -1 là ước của 6

vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}

n=1; 2

Minh Trần
Xem chi tiết