Cho A=\(\frac{1}{3}x\frac{4}{6}x\frac{7}{9}x.....x\frac{208}{210}\)
Chứng minh :A<\(\frac{1}{25}\)
Cho A=\(\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.\frac{10}{12}...\frac{208}{210}\)
Chứng minh A<\(\frac{1}{25}\)
Cho A=\(\frac{1}{3}.\) \(\frac{4}{6}.\frac{7}{9}.\frac{10}{12}....\frac{208}{210}\)
Chứng minh rằng A<1/25
Cho A=\(\frac{1}{3}.\frac{4}{6}.\frac{7}{9}...\frac{208}{210},CMR:A< \frac{1}{25}\)
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Chứng minh:
\(\frac{1}{3}\). \(\frac{4}{6}\). \(\frac{7}{9}\).....\(\frac{208}{210}\)< \(\frac{1}{25}\).
Cho A=\(\frac{1}{3}.\frac{4}{6}\frac{7}{9}.\frac{10}{12}...\frac{208}{210}\)
CMR: \(\frac{1}{52}
cho A=\(\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.\frac{10}{12}.....\frac{208}{210}\)
cmr: A<\(\frac{1}{25}\)
giúp mik với mik cần gấp
Bài 1:Tìm 2 số tự nhiên a và b biết tổng UCLN và BCNN của chúng là 15
Bài 2;Tìm x biết: 1) \(-\frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{1}{3}\left(2x-1\right)\)
2)\(\frac{1}{5}.2^x+\frac{1}{3}.2^{x+1}=\frac{1}{5}.2^7+\frac{1}{3}.2^8\)
Bài 3:Tìm các số nguyên n sao cho: \(^{n^2+5n+9}\)là bội của n+3
Bài 4:Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Bài 5:Tìm x nguyên thỏa mãn:|x+1|+|x-2|+|x+7|=5x-10
Bài 6;Tìm 3 số có tổng bằng 210, biết rằng 6/7 ST1 bằng 9/11 ST2 và 9/11 ST2 bằng 2/3 ST3
Bài 7: Tìm 2 số biết tỉ số của chứng bằng 5:8 và tích của chứng bằng 360
Mình đang cần gấp.Các bạn giúp nha
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
a)Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 3, cho 5, cho 7 được số dư thứ tự là 2, 4, 6
b) \(\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)
c)\(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(b.\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)
\(\Leftrightarrow\frac{35+9}{105}< \frac{x}{210}< \frac{60+63+35}{105}\)
\(\Leftrightarrow\frac{44}{105}< \frac{x}{210}< \frac{158}{105}\)
\(\Leftrightarrow\frac{88}{210}< \frac{x}{210}< \frac{316}{210}\)
Suy ra \(x\in\left\{89;90;100;...;313;314;315\right\}\)
\(c.\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{11}-\frac{1}{21}-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\frac{21-11-231x+221}{231}=\frac{308}{231}\)
\(\Leftrightarrow-231x=308-21+11-221\)
\(\Leftrightarrow-231x=77\)
\(\Leftrightarrow x=-\frac{77}{231}=-\frac{1}{3}\)
^^