Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Anh
Xem chi tiết
Nguyễn Tuấn
14 tháng 3 2016 lúc 19:29

vì đen ta >0

=>gọi 2 nghiệm của pt là x1;x2

Ta có : x1+x2= -m(1)

x1*x2=n(2)

=>x1*x2-x1-x2=n+m=198 (4)

mà m=198-n(3)

Thay (1);(2)(3) vô (4) ta dc n-198+n=198

giải ra n rồi tìm m rồi tự tìm nghiệm

Trần Bảo Anh
Xem chi tiết
Pham Thuy Mai
Xem chi tiết
Akai Haruma
4 tháng 10 lúc 14:11

Lời giải:
Để PT có nghiệm nguyên thì:

$\Delta=m^2-4n=a^2$ với $a$ là số tự nhiên.

$\Rightarrow 4n=(m-a)(m+a)$

Vì $n$ là số nguyên tố nên và $m-a< m+a$ với $a$ tự nhiên, $m+a, m-a$ cùng tính chẵn lẻ nên ta xét các TH sau đây:

TH1: 

$m-a=2, m+a=2n\Rightarrow m=n+1$

$\Rightarrow m,n$ khác tính chẵn lẻ. Mà $m,n$ nguyên tố nên 1 trong 2 số bằng 2.

$n< m$ nên $n=2\Rightarrow m=3$.

TH2: 
$m-a=4, m+a=n$

Vì $m-a$ chẵn nên $m+a$ chẵn. Hay $n$ chẵn $\Rightarrow n=2$

$\Rightarrow m+a< m-a$ (vô lý - loại) 

Vậy........

 

Akai Haruma
4 tháng 10 lúc 14:11

Lời giải:
Để PT có nghiệm nguyên thì:

$\Delta=m^2-4n=a^2$ với $a$ là số tự nhiên.

$\Rightarrow 4n=(m-a)(m+a)$

Vì $n$ là số nguyên tố nên và $m-a< m+a$ với $a$ tự nhiên, $m+a, m-a$ cùng tính chẵn lẻ nên ta xét các TH sau đây:

TH1: 

$m-a=2, m+a=2n\Rightarrow m=n+1$

$\Rightarrow m,n$ khác tính chẵn lẻ. Mà $m,n$ nguyên tố nên 1 trong 2 số bằng 2.

$n< m$ nên $n=2\Rightarrow m=3$.

TH2: 
$m-a=4, m+a=n$

Vì $m-a$ chẵn nên $m+a$ chẵn. Hay $n$ chẵn $\Rightarrow n=2$

$\Rightarrow m+a< m-a$ (vô lý - loại) 

Vậy........

 

Huỳnh Trần Thảo Nguyên
Xem chi tiết
Minh
25 tháng 7 2018 lúc 16:13

Giup minh vs: https://olm.vn/hoi-dap/question/1269512.html

Haley
Xem chi tiết
D.S Gaming
Xem chi tiết
D.S Gaming
Xem chi tiết
chikaino channel
Xem chi tiết
Nguyễn Anh
Xem chi tiết
Hoàng Thị Lan Hương
9 tháng 8 2017 lúc 15:15

a. Với \(m=1;n=\sqrt{2}\)thay vào phương trình ta có 

\(x^2+\left(\sqrt{2}+1\right)x+\sqrt{2}=0\Leftrightarrow x\left(x+\sqrt{2}\right)+\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\sqrt{2}\end{cases}}\)

Vậy với \(m=1;n=\sqrt{2}\)thì phương trình có 2 nghiệm \(x=-1;x=-\sqrt{2}\)

b. Ta có \(\Delta=\left(mn+1\right)^2-4mn=m^2n^2+2mn+1-4mn=m^2n^2-2mn+1\)

\(=\left(mn-1\right)^2>0\forall m,n\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m;n