số các số nguyên dương x thỏa mãn \(\frac{x}{4}=\frac{197}{x+2}\)
Số các số nguyên dương x thỏa mãn \(\frac{x}{4}=\frac{197}{x+2}\)là ...
a, 4(x+y+z) = xyz
b, x+y+z -9- -xyz = 0
2.Tìm các số nguyên dương x,y,z,t thỏa mãn:
5(x+y+z+t)+10= 2xyzt
3.Tìm các số nguyên dương x,y,z,t thỏa mãn:
\(\frac{1}{^{x^2}}\)+\(\frac{1}{y^2}\)+\(\frac{1}{z^2}\)+\(\frac{1}{t^2}\)= 1
Bạn nào trả lời nhanh, đúng : mk chọn.
1) Có những cặp số nguyên nào thỏa mãn x.y=x+y
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
1.số cặp (x;y) nguyên dương thỏa mãn x^2 + y^2 =13 là ..
2.Tập hợp các số nguyên x thỏa mãn \(\frac{3}{x+2}\)= \(\frac{x+2}{3}\) là {.....}
(Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu ";")
3.Cặp số nguyên dương (x;y) thỏa mãn |(x^2 + 3) (y+1)|=16 là (x;y) (....)
(Nhập các giá trị theo thứ tự,cách nhau bởi dấu ";" )
đố vui
1 ơi + 2 ơi = bằng mấy ơi ?
đây là những câu đố vui sau những ngày học mệt nhọc
4 ơi??? hay 5 ơi, mjk hok bjk chịu thua nèk, pn ns đi Anh Nguyễn Lê Quan
chỉ có 1 cặp thôi là 2^2 +3^2=13
Tìm các số nguyên dương x,y thỏa mãn: \(\frac{x^2}{2xy^2-y^3+1}\)là 1 số nguyên dương
1)Có những cặp số nguyên nào thỏa mãn x*y=x+y?
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
Bài 1
1.Tìm các số tự nhiên x;y thỏa mãn:\(x^2\)+\(3^y\)=3026
2.Tìm các số nguyên dương x;y thỏa mãn:\(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}=\frac{1}{2}\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
câu a làm cách khác đi bạn
Tìm các số nguyên dương x,y thỏa mãn: \(\frac{x^2}{2xy^2-y^3+1}\) là một số nguyên dương
Gắt thế,IMO 2003
Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)
Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn
Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)
\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)
Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương
Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)
\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)
Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)
Vậy.........................
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)