Chứng minh rằng nếu a + c = 2b và 2bd = c ( b + d ) thì a/b = c/d với b, d khác 0
Chứng minh rằng: Nếu a+c= 2b và 2bd=c(b+d) (b+d khác 0) thì a/b=c/d
\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)
\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(a+c=2b_{\left(1\right)}\)
\(2bd=c\left(b+d\right)_2\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)
\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )
\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )
\(\Rightarrow\)\(\left(đpcm\right)\)
chứng minh rằng :Nếu a+c=2b và 2bd=c(b+d)
(b;d khác 0) thì a/b=c/d
Chứng minh rằng nếu a + c = 2b và 2bd = c.(b + d) với b, d khác 0 thì \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng nếu a + c = 2b và 2bd = c(b + d ) thì \(\frac{a}{b}=\frac{c}{d}\)với b,d khác 0.
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
Ta có : 2bd = c (b + d )
=> ( a + c ). d = bc + cd
=>ad + cd = bc + cd
=>ad = bc
=> a/b = c/ d ( đpcm)
Chứng minh nếu a+c=2b và 2bd=c(b+d) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)với b,d khác 0
Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)
Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
Vậy \(\frac{a}{b}=\frac{c}{d}\)
CMR: Nếu a+c=2b và 2bd=c(b+d)(với b khác 0; d khác 0) thì a/b=c/d
Ta có:
\(2bd=c\left(b+d\right)\)
\(\Rightarrow\left(a+c\right).d=bc+cd\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> a/b = c/d (đpcm)
cho a+c= 2b và 2bd c(b+d, với b, d khác 0). Chứng minh: a/b=c/d
\(a+c=2b\) (*)
\(2bd=c\left(b+d\right)\)(**)
Thế (*) vào (**)
\(\left(a+c\right)d=c\left(b+d\right)\)
Theo tính chất phân phối ta có:
\(ad+cd=cb+cd\)
\(\Leftrightarrow ad=cb\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng nếu a + c = 2b và 2bd = c.(b+d) với (b\(\ne\) 0, d \(\ne\)0) thì a/b = c/d
\(2b.d=c\left(b+d\right)\Leftrightarrow\left(a+c\right)d=c\left(b+d\right)\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Cho a+c-2b=0 và 2bd-c (b+d)=0 (b, d khác 0). Chứng minh a/b=c/d