(x-1)2+5 tim GTNN
tim gtnn cua A=(x+1).(x^2-4).(x+5)+2014
tim gtnn D=(2x^2-5x+5)/(x^2-x+1)
Tim GTNN:
5x^2-1
3(x+1)^2-2
|x-5|-3
nhận xét ta thấy
5x^2 >=0
=> 5x^2 -1 >=-1
dấu = xảy ra khi và chỉ khi
x = 0
các câu sau tương tự
h nha
thanks
Gọi A = 5x2 - 1
Ta có :
5 > 0
x2 \(\ge\)0
=> 5x2 \(\ge\)0
=> 5x2 - 1 \(\ge\)-1
=> MinA = -1
\(\Leftrightarrow5x^2-1=-1\)
\(\Leftrightarrow5x^2=0\)
=> x = 0
voi x > 1/2
tim gtnn cua D=x/3 + 5/2x-1
1, tim GTLN cua A=13/(x+5)^2+7
2, tim GTNN cua B=|x+2017|+(y+3)^2+2017
3, cho a-1/2=b+3/4=c-5/6 va 5a-3b-4c=46. Tim a,b,c.
Tìm GTNN của 5/(x+3)+1
Tim x€Q biết | 2-| 1-x | | = | 2x-5 |
a)tim GTNN cua
A=/x-2019/+(y-1)^2020-2
C=/x-3/+/x+4/-5
b)tim GTLN
B=3^2-4/x^2-25/
D=x-4/x-5
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
1.Tim GTNN 2x^2-8x-3
2.tim GTNN x^4-13x^2+36
tim GTNN
/x^2+x+2/+/x^2+2x+5/