tìm STN nhỏ nhất có 2 chữ số biết số đó chia 3 dư 1,chia 4 dư 2,chia 5 dư 3
Tìm STN nhỏ nhất biết số đó chia cho 2 dư 1,chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4.
Tìm STN nhỏ nhất biết số đó chia cho 2 dư 1,chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4.
Gọi số cần tìm là A. Vì A chia cho 2 dư 1 và A chia cho 5 dư 4 nên A + 1 đồng thời chia hết cho 2 và 5. Vậy chữ số tận cùng của A + 1 là 0. Hiển nhiên A +1 không thể có 1 chữ số. Nếu A + 1 có 2 chữ số thì có dạng x0. Vì x0 chia hết cho 3 nên x chỉ có thể là 3 ; 6 ; 9 ta có số 30 ; 60 ; 90. Trong 3 số đó chỉ có 60 là chia hết cho 4 .
Vậy SCT là : 60-1 =59
Đáp số: 59
Tìm stn nhỏ nhất , biết số đó chia 3 dư 2 ,chia 4 dư 3 , chia 5 dư 11 và chia 10 dư 9
Tìm STN nhỏ nhất, biết rằng số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và chia cho 10 dư 8.
mình đánh lộn số 68
nha bạn
cho minh dung nha
Bài 2 Tìm STN có 3 chữ số lớn nhấy ma khi chia số đó
cho 4 dư 3,chia 5 dư 4 ,chia 6 dư 5
b) Tìm STN nhỏ hơn 400 ma khi chia số đó cho 2,3,4,5,6 đều dư 1 và khi chia cho 7 thì không dư
tìm STN nhỏ nhất biết rằng khi chia số đó cho 3 dư 2 chia 4 dư 3 chia 5 dư 4 cho 10 dư 9
bạn đưa về dạng a+1 là bcnn của 3,4,5 và 10 sẽ ra a là 59 nhé
Gọi số tự nhiên cần tìm là a (Điều kiện:a \(\in\)N)
Theo bài ra ta có:
a : 3(dư 2)=> a + 1 \(⋮\)3
a : 4(dư 3)=> a + 1 \(⋮\)4
a : 5(dư 4)=> a + 1 \(⋮\)5
a : 10(dư 9)=>a + 1 \(⋮\)10
Vì a nhỏ nhất
Do đó a + 1\(\in\)BCNN(3;4;5;10)
Và 3 = 3
4 = 22
5 = 5
10 = 2 x 5
=> BCNN(3;4;5;10) = 3 x 22 x 5 = 60
=> a + 1 \(\in\)B(60)
=> a + 1 \(\in\){0;60;120;180;240;300;360;420;...}
Vì a : 3(dư 2)=> a > 2
=> a + 1 = 60
=> a = 60 - 1 = 59
Vậy số cần tìm là 59.
Học~Tốt
Tìm stn nhỏ nhất biết rằng số đó chia 3 dư1; chia 4 dư 2; chia 5 dư 3; chia 6 dư 4 và chia hết cho 13
Gọi số cần tìm là A .
Ta có:
A chia 3 dư 1 , 4 dư 2 , 5 dư 3 , 6 dư 4 .
Nên A+2 chia hết cho 3,4,5,6 .
A+2 = BC (3,4,5,6).
Ta có: 3=3, 4=2.2, 5=5, 6=2.3
=>BCNN=2.2, 3.5=60
A+2=>B(60)={0,60,120, 180,240,300,....}
Nên A=>{58,118,174,238,298,358,418,478,538,598,658,...}
Mà A là số tự nhiên nhỏ nhất mà chia hết cho 13 nên A=538
bn Ngô Việt Bắc 2.2 là số 2 đằng sau la mũ 2 nhé !!!!!!!!!!!!!!
1.STN nhỏ nhất chia cho 6 dư 5 nhưng chia cho 19 dư 2
a) Tìm STN nhỏ nhất có tính chất trên.
b) Tìm dạng tổng quát của các STN có tính chất trên
2. Một STN chia cho 5 dư 1, chia cho 21 dư 3
a) Tìm STN nhỏ nhất có tính chất trên.
b) Hỏi số đó chia cho 105 dư bao nhiêu?
c) Số đó chia cho 35 dư bao nhiêu?
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)
Bài 2, ý b
66 : 105 = 0 dư 66
Vậy số đó chia 105 dư 66
66 : 35 = 1 dư 31
Vậy số đó chia 35 dư 31
Tìm STN nhỏ nhất sao cho số đó chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 11.
Gọi số cần tỉm là a.
Theo đề bài, ta có: a + 2 chia hết cho 3 ; 4 ; 5 ; 6
Suy ra: a + 2 là BC ( 3 ; 4 ; 5 ; 6 )
BCNN ( 3 ; 4 ; 5 ; 6 ) = 60 => a + 2 = 60 . n
Do đó: a = 60 . n - 2 ; N = { 1 ; 2 ; 3 ; 4 }
Mặt khác a chia hết cho 11 lần lượt cho 1 ; 2 ; 3 ....
Ta thấy N = 7 => a = 418 chia hết cho 11.
Vậy số cần tìm là 418.
@@
gọi số đó là a
a:3 dư 1 a:4 dư 2
=> a-1 chia hết cho 3 => a-2 chia hết 4
a-1+3 chia hết cho 3 a-2+4 chia hết 4
a+2 chia hết cho 3 a+2 chia hết 4
a:5 dư 3 a:6 dư 4
=> a-3 chia hết 5 a-4 chia hết 6
a-3+5 chia hết 5 a-4+6 chia hết 6
a+2 chia hết 5 a+2 chia hết 6
=> a+2 chia hết 3;4;5;6
BCNN(3;4;5;6)=60
=> a=62
tìm stn bé nhất biết số đó chia 2 dư 1, chia 3 dư 2 , chia 4 dư 3 và chia 5 dư 4
Gọi Số tự nhiên đó là A;
Ta thấy A + 1 sẽ chia hết cho cả 2;3;4;5
=> \(A+1=B\left(2;3;4;5\right)=B\left(60\right)=\left\{60;120;180;...\right\}\)
A bé nhất thì A + 1 cũng bé nhất => \(A+1=60\)
=> A = 59.
Gọi số cần tìm là x (x thuộc N* ; x nhỏ nhất)
Khi đó : x + 1 chia hết cho 2 ; 3 ;4 ; 5
=> x + 1 thuộc BCNN(2;3;4;5)
=>BCNN(2;3;4;5) = 60
=> x + 1 = 60
=> x = 59
Gọi số cần tìm là x (x thuộc N* ; x nhỏ nhất)
Khi đó : x + 1 chia hết cho 2 ; 3 ;4 ; 5
=> x + 1 thuộc BCNN(2;3;4;5)
=>BCNN(2;3;4;5) = 60
=> x + 1 = 60
=> x = 59